32 resultados para Optical spin transfer
Resumo:
[Excerpt] Academic spin-offs, technological ventures born inside Universities, have increasingly strengthen the connections between the scholarship and the economy, by fostering the role of technology transfer and knowledge commercialization. This presentation will outline the major steps in taking an idea or a technology to market, growing the venture and aiming at securing a successful exit. Also, it will present BCTechnologies (Bacterial Cellulose Technologies), a spin-off from the University of Minho (Portugal). (...)
Resumo:
The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).
Resumo:
Dissertação de mestrado em Marketing e Estratégia
Resumo:
COST (European Co-operation in the field of scientific and technical research) is the longest running framework for research co-operation iri Europe, having been established in 1971 by a Ministerial Conference attended by Ministers for Science and Technology from 19 countries. Today COST is used by the scientific communities of 35 European countries to cooperate in exchanging knowledge and technology developed within research projects supported by national or European funds. The main objective of COST is to contribute to the realization of the European Research Área (ERA) anticipating and complementing the activities of the' Framework Programmes, constituting a "bridge" towards the scientific communities of emerging countries, increasing the mobility of researchers across Europe and fostering the establishment of "Networks of Excelience". Another essential objective is the knowledge transfer between the scientific soc'iety and industry. It is widely acknowledged that European scientific performance in relation to investment in science is excellent but technological and commercial performance has steadily worsened. The present paper discusses how the COST Action's instruments, from training schools to short scientific missions and workshops have been used within The COST ACTION FP11O1 Assessment, Reinforcement and Monitoring of Timber Structures to achieve such objectives.
Resumo:
This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.
Resumo:
As increasingly more sophisticated materials and products are being developed and times-to-market need to be minimized, it is important to make available fast response characterization tools using small amounts of sample, capable of conveying data on the relationships between rheological response, process-induced material structure and product characteristics. For this purpose, a single / twin-screw mini-extrusion system of modular construction, with well-controlled outputs in the range 30-300 g/h, was coupled to a in- house developed rheo-optical slit die able to measure shear viscosity and normal-stress differences, as well as performing rheo-optical experiments, namely small angle light scattering (SALS) and polarized optical microscopy (POM). In addition, the mini-extruder is equipped with ports that allow sample collection, and the extrudate can be further processed into products to be tested later. Here, we present the concept and experimental set-up [1, 2]. As a typical application, we report on the characterization of the processing of a polymer blend and of the properties of extruded sheets. The morphological evolution of a PS/PMMA industrial blend along the extruder, the flow-induced structures developed and the corresponding rheological characteristics are presented, together with the mechanical and structural characteristics of produced sheets. The application of this experimental tool to other material systems will also be discussed.
Resumo:
Universities are increasingly institutionalizing activities related to technology transfer and one of the main institutional mechanisms that has emerged is the “technology transfer unit” (TTU). Many of them are focusing their activities on the management of the university intellectual property. Studies have investigated factors that seem to affect their performance, but few have looked in detail at internal procedures and techniques that are used in their processes related to technology evaluation and licensing. The aim of this paper is to provide a comprehensive overview of some of the several steps that comprises the processes regarding technology evaluation and licensing, providing an analysis of the critical issues that affect each step of the process. A review of the literature was made, complemented with interviews to seven university TTUs, which was used as a check and a complement to the literature review and as way of perceiving from an insider perspective, the problems and issues that this paper wants to emphasize and to state clearly.
Resumo:
The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
A measurement of spin correlation in tt¯ production is presented using data collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb−1. The correlation between the top and antitop quark spins is extracted from dilepton tt¯ events by using the difference in azimuthal angle between the two charged leptons in the laboratory frame. In the helicity basis the measured degree of correlation corresponds to Ahelicity=0.38±0.04, in agreement with the Standard Model prediction. A search is performed for pair production of top squarks with masses close to the top quark mass decaying to predominantly right-handed top quarks and a light neutralino, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 191 GeV are excluded at the 95% confidence level.
Resumo:
Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.
Resumo:
The energy harvesting efficiency of poly(vinylidene fluoride-trifluoroethylene) spin coated films and its nanocomposites with piezoelectric BaTiO3 have been investigated as a function of ceramic filler size and content. It is found that the best energy harvesting performance of ~0.28 W is obtained for the nanocomposite samples with 20% filler content of 10 nm size particles and for 5% filler content for the 100 and 500 nm size fillers. For the larger filler average sizes, the power decreases for filler contents above 5% due to increase of the mechanical stiffness of the samples. Due to the similar dielectric characteristics of the samples, the performance is mainly governed by the mechanical response. The obtained power values, easy processing and the low cost and robustness of the polymer, allow the implementation of the material for micro and nanogenerator applications.
Resumo:
Studies of the spin and parity quantum numbers of the Higgs boson in the WW∗→eνμν final state are presented, based on proton--proton collision data collected by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. The Standard Model spin-parity JCP=0++ hypothesis is compared with alternative hypotheses for both spin and CP. The case where the observed resonance is a mixture of the Standard-Model-like Higgs boson and CP-even (JCP=0++) or CP-odd (JCP=0+−) Higgs boson in scenarios beyond the Standard Model is also studied. The data are found to be consistent with the Standard Model prediction and limits are placed on alternative spin and CP hypotheses, including CP mixing in different scenarios.
Resumo:
We investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudo-magnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99$\%$ in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of $|{\bf B}|$, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.
Resumo:
Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).