2 resultados para superposition

em Institutional Repository of Leibniz University Hannover


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the suitability of an Einstein-Podolsky-Rosen entanglement source for Gaussian continuous-variable quantum key distribution at 1550 nm. Our source is based on a single continuous-wave squeezed vacuum mode combined with a vacuum mode at a balanced beam splitter. Extending a recent security proof, we characterize the source by quantifying the extractable length of a composable secure key from a finite number of samples under the assumption of collective attacks. We show that distances in the order of 10 km are achievable with this source for a reasonable sample size despite the fact that the entanglement was generated including a vacuum mode. Our security analysis applies to all states having an asymmetry in the field quadrature variances, including those generated by superposition of two squeezed modes with different squeezing strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.