2 resultados para preparation methods
em Institutional Repository of Leibniz University Hannover
Resumo:
Drug delivery systems are defined as formulations aiming for transportation of a drug to the desired area of action within the body. The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Based on their biodegradable, biocompatible, and nonimmunogenic structure, niosomes are promising drug carriers that are formed by self-association of nonionic surfactants and cholesterol in an aqueous phase. In recent years, numerous research articles have been published in scientific journals reporting the potential of niosomes to serve as a carrier for the delivery of different types of drugs. The present review describes preparation methods, characterization techniques, and recent studies on niosomal drug delivery systems and also gives up to date information regarding recent applications of niosomes in drug delivery.
Resumo:
Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity. © Author(s) 2009.