2 resultados para flowering phenology
em Institutional Repository of Leibniz University Hannover
Resumo:
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r(2) = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars.
Resumo:
Background: Calluna vulgaris is one of the most important landscaping plants produced in Germany. Its enormous economic success is due to the prolonged flower attractiveness of mutants in flower morphology, the so-called bud-bloomers. In this study, we present the first genetic linkage map of C. vulgaris in which we mapped a locus of the economically highly desired trait " flower type" .Results: The map was constructed in JoinMap 4.1. using 535 AFLP markers from a single mapping population. A large fraction (40%) of markers showed distorted segregation. To test the effect of segregation distortion on linkage estimation, these markers were sorted regarding their segregation ratio and added in groups to the data set. The plausibility of group formation was evaluated by comparison of the " two-way pseudo-testcross" and the " integrated" mapping approach. Furthermore, regression mapping was compared to the multipoint-likelihood algorithm. The majority of maps constructed by different combinations of these methods consisted of eight linkage groups corresponding to the chromosome number of C. vulgaris.Conclusions: All maps confirmed the independent inheritance of the most important horticultural traits " flower type" , " flower colour" , and " leaf colour". An AFLP marker for the most important breeding target " flower type" was identified. The presented genetic map of C. vulgaris can now serve as a basis for further molecular marker selection and map-based cloning of the candidate gene encoding the unique flower architecture of C. vulgaris bud-bloomers. © 2013 Behrend et al.; licensee BioMed Central Ltd.