2 resultados para distribution change

em Institutional Repository of Leibniz University Hannover


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The negative effects of climate change are already evident for many of the 25 million coffee farmers across the tropics and the 90 billion dollar (US) coffee industry. The coffee berry borer (Hypothenemus hampei), the most important pest of coffee worldwide, has already benefited from the temperature rise in East Africa: increased damage to coffee crops and expansion in its distribution range have been reported. In order to anticipate threats and prioritize management actions for H. hampei we present here, maps on future distributions of H. hampei in coffee producing areas of East Africa. Using the CLIMEX model we relate present-day insect distributions to current climate and then project the fitted climatic envelopes under future scenarios A2A and B2B (for HADCM3 model). In both scenarios, the situation with H. hampei is forecasted to worsen in the current Coffea arabica producing areas of Ethiopia, the Ugandan part of the Lake Victoria and Mt. Elgon regions, Mt. Kenya and the Kenyan side of Mt. Elgon, and most of Rwanda and Burundi. The calculated hypothetical number of generations per year of H. hampei is predicted to increase in all C. arabica-producing areas from five to ten. These outcomes will have serious implications for C. arabica production and livelihoods in East Africa. We suggest that the best way to adapt to a rise of temperatures in coffee plantations could be via the introduction of shade trees in sun grown plantations. The aims of this study are to fill knowledge gaps existing in the coffee industry, and to draft an outline for the development of an adaptation strategy package for climate change on coffee production. An abstract in Spanish is provided as Abstract S1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.