6 resultados para ddc: 378.1
em Institutional Repository of Leibniz University Hannover
Resumo:
The 2108,0 m deep exploration well "Bad Laer Z 1" (1993) has been carried down in order to investigate the deeper ground lying beneath the "Kleiner Berg" anticline, concerning the existence of reservoir beds which was postulated according to preceeding seismic investigations. This aim of the borehole was not attained, because no formations have been drilled suitable for the construction of an artificial gas reservoir. On the other hand the bore hole revealed a great amount of new regional geologic, stratigraphic, mining, coalification and coal bed gas data. Therefore, from a scientific point of view the exploration well must be considered successful. After the drilling of a stratigraphic succession, mainly consisting of cretaceous "Pläner" limestones (from Albian to Turonian), surprisingly in a depth of only 439 m productive Upper Carboniferous rocks formed by the Lembeck beds of uppermost Westfalian C have been found. In addition to this discovery, nearly the whole Westfalian C and B reaching down to the coal bed "Katharina" at the Westfalian A boundary were drilled through revealing over 66 partly minable coal beds. Investigations of the coalification pattern showed a more or less continuous increase of the rank gradient with depth reaching from the step of gas flame coal down to 700 m over that of gas coal down to 1600 m to that of fat coal down to the bottom of the borehole. An additional surprising result of the exploration well was the observation, that immediately below the base of the Cretaceous the coal beds revealed a high gas content without the presence of a desorption zone. This result must also be considered as success of the drilling with respect to the strong interest in a potential utilization of coal bed methane nowadays.
Resumo:
Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.
Resumo:
We investigate protocols for generating a state t-design by using a fixed separable initial state and a diagonal-unitary t-design in the computational basis, which is a t-design of an ensemble of diagonal unitary matrices with random phases as their eigenvalues. We first show that a diagonal-unitary t-design generates a O (1/2(N))-approximate state t-design, where N is the number of qubits. We then discuss a way of improving the degree of approximation by exploiting non-diagonal gates after applying a diagonal-unitary t-design. We also show that it is necessary and sufficient to use O (log(2)(t)) -qubit gates with random phases to generate a diagonal-unitary t-design by diagonal quantum circuits, and that each multi-qubit diagonal gate can be replaced by a sequence of multi-qubit controlled-phase-type gates with discrete-valued random phases. Finally, we analyze the number of gates for implementing a diagonal-unitary t-design by non-diagonal two- and one-qubit gates. Our results provide a concrete application of diagonal quantum circuits in quantum informational tasks.
Resumo:
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Resumo:
The title compound, C(16)H(18)O(2)P(2), possesses two stereogenic P atoms and shows a distorted s-cis conformation of each O=P-C=C moiety. This has been suggested on the basis of the stereochemical result of 1,3-dipolar cyclo-additions with nitro-nes and is now confirmed by the present crystal structure analysis. There are two crystallographically independent molecules in the asymmetric unit.