2 resultados para ddc: 004
em Institutional Repository of Leibniz University Hannover
Resumo:
An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction.
Resumo:
The "Sonar Hopf" cochlea is a recently much advertised engineering design of an auditory sensor. We analyze this approach based on a recent description by its inventors Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the "Sonar Hopf" model, its analysis and the corresponding hardware in detail. We identify problems in the theoretical formulation of the model and critically examine the claimed coherence between the described model, the measurements from the implemented hardware, and biological data.