2 resultados para Weingarten-type linear map

em Institutional Repository of Leibniz University Hannover


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Regional differences in physician supply can be found in many health care systems, regardless of their organizational and financial structure. A theoretical model is developed for the physicians' decision on office allocation, covering demand-side factors and a consumption time function. METHODS: To test the propositions following the theoretical model, generalized linear models were estimated to explain differences in 412 German districts. Various factors found in the literature were included to control for physicians' regional preferences. RESULTS: Evidence in favor of the first three propositions of the theoretical model could be found. Specialists show a stronger association to higher populated districts than GPs. Although indicators for regional preferences are significantly correlated with physician density, their coefficients are not as high as population density. CONCLUSIONS: If regional disparities should be addressed by political actions, the focus should be to counteract those parameters representing physicians' preferences in over- and undersupplied regions.