5 resultados para Unified field theories
em Institutional Repository of Leibniz University Hannover
Resumo:
We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
We classify the N = 4 supersymmetric AdS(5) backgrounds that arise as solutions of five-dimensional N = 4 gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/ (U(1) x SU(m)) and discuss our results regarding holographically dual N = 2 SCFTs and their conformal manifolds.
Resumo:
The spherical reduction of the rational Calogero model (of type A n−1 and after removing the center of mass) is considered as a maximally superintegrable quantum system, which describes a particle on the (n−2)-sphere subject to a very particular potential. We present a detailed analysis of the simplest non-separable case, n=4, whose potential is singular at the edges of a spherical tetrahexahedron. A complete set of independent conserved charges and of Hamiltonian intertwiners is constructed, and their algebra is elucidated. They arise from the ring of polynomials in Dunkl-deformed angular momenta, by classifying the subspaces invariant and antiinvariant under all Weyl reflections, respectively.
Resumo:
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.
Resumo:
Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D-3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z(4) parafermion or a M-(5,M-6) minimal model.