1 resultado para Tuberculosis-Diagnosis
em Institutional Repository of Leibniz University Hannover
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Aquatic Commons (12)
- ARCA - Repositório Institucional da FIOCRUZ (3)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (51)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (16)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (49)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Helda - Digital Repository of University of Helsinki (24)
- Indian Institute of Science - Bangalore - Índia (165)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (221)
- Queensland University of Technology - ePrints Archive (115)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (7)
- Universidad Autónoma de Nuevo León, Mexico (33)
- Universidad del Rosario, Colombia (14)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (7)
- Université de Lausanne, Switzerland (34)
- Université de Montréal, Canada (6)
- University of Michigan (3)
- University of Washington (3)
- WestminsterResearch - UK (3)
Resumo:
A deterministic model of tuberculosis in Cameroon is designed and analyzed with respect to its transmission dynamics. The model includes lack of access to treatment and weak diagnosis capacity as well as both frequency-and density-dependent transmissions. It is shown that the model is mathematically well-posed and epidemiologically reasonable. Solutions are non-negative and bounded whenever the initial values are non-negative. A sensitivity analysis of model parameters is performed and the most sensitive ones are identified by means of a state-of-the-art Gauss-Newton method. In particular, parameters representing the proportion of individuals having access to medical facilities are seen to have a large impact on the dynamics of the disease. The model predicts that a gradual increase of these parameters could significantly reduce the disease burden on the population within the next 15 years.