2 resultados para Titania-supported platinum
em Institutional Repository of Leibniz University Hannover
Resumo:
Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.
Resumo:
Herein, Cu 2O spheres were prepared and encapsulated with reduced graphene oxide (rGO). The Cu 2O–rGO–C3N4 composite covered the whole solar spectrum with significant absorption intensity. rGO wrapped Cu 2O loading caused a red shift in the absorption with respect to considering the absorption of bare C3N4. The photoluminescence study confirms that rGO exploited as an electron transport layer at the interface of Cu 2O and C3N4 heterojunction. Utmost, ∼2 fold synergistic effect was achieved with Cu 2O–rGO–C3N4 for the photocatalytic reduction of 4-nitrophenol to 4-aminophenol in comparison with Cu 2O–rGO and C3N4. The Cu 2O–rGO–C3N4 photocatalyst was reused for four times without loss in its activity.