3 resultados para T2
em Institutional Repository of Leibniz University Hannover
Resumo:
Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Echo (MESE; serving as a reference), a T2-prepared balanced Steady State Free Precession (T2prep) and a Gradient Spin Echo sequence. For the subsequent in vivo study, 12 healthy volunteers were examined on a clinical 1.5 T scanner. The three T2-mapping sequences were performed at three short-axis slices. Global myocardial T2 relaxation times were calculated and statistical analysis was performed. For assessment of pixel-by-pixel homogeneity, the number of segments showing an inhomogeneous T2 value distribution, as defined by a pixel SD exceeding 20 % of the corresponding observed T2 time, was counted. Results: Phantom experiments showed a greater difference of measured T2 values between T2prep and MESE than between GraSE and MESE, especially for species with low T1 values. Both, GraSE and T2prep resulted in an overestimation of T2 times compared to MESE. In vivo, significant differences between mean T2 times were observed. In general, T2prep resulted in lowest (52.4 +/- 2.8 ms) and GraSE in highest T2 estimates (59.3 +/- 4.0 ms). Analysis of pixel-by-pixel homogeneity revealed the least number of segments with inhomogeneous T2 distribution for GraSE-derived T2 maps. Conclusions: The GraSE sequence is a fast and robust sequence, combining advantages of both MESE and T2prep techniques, which promises to enable improved clinical applicability of T2-mapping in the future. Our study revealed significant differences of derived mean T2 values when applying different sequence designs. Therefore, a systematic comparison of different cardiac T2-mapping sequences and the establishment of dedicated reference values should be the goal of future studies.
Resumo:
BACKGROUND: The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. METHODS: Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. RESULTS: Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. CONCLUSIONS: The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.