1 resultado para Statistical inference
em Institutional Repository of Leibniz University Hannover
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (26)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (12)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (18)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (216)
- CentAUR: Central Archive University of Reading - UK (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (62)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (23)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (26)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (54)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (15)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (150)
- Queensland University of Technology - ePrints Archive (188)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- South Carolina State Documents Depository (8)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (5)
- University of Washington (2)
Resumo:
In physics, one attempts to infer the rules governing a system given only the results of imperfect measurements. Hence, microscopic theories may be effectively indistinguishable experimentally. We develop an operationally motivated procedure to identify the corresponding equivalence classes of states, and argue that the renormalization group (RG) arises from the inherent ambiguities associated with the classes: one encounters flow parameters as, e.g., a regulator, a scale, or a measure of precision, which specify representatives in a given equivalence class. This provides a unifying framework and reveals the role played by information in renormalization. We validate this idea by showing that it justifies the use of low-momenta n-point functions as statistically relevant observables around a Gaussian hypothesis. These results enable the calculation of distinguishability in quantum field theory. Our methods also provide a way to extend renormalization techniques to effective models which are not based on the usual quantum-field formalism, and elucidates the relationships between various type of RG.