2 resultados para Squeezed state

em Institutional Repository of Leibniz University Hannover


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. Full information of the state of light can only be gathered by a tomographic measurement. Here we demonstrate a tomographic interferometer readout by measuring arbitrary quadratures of the light field exiting a Michelson-Sagnac interferometer that contains a thermally excited high-quality silicon nitride membrane. A readout noise of 1.9 x 10(-16) mHz(-1/2) around the membrane's fundamental oscillation mode at 133 kHz has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.