2 resultados para Spin-orbit interactions

em Institutional Repository of Leibniz University Hannover


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC (SOBEC) phase separates into domains, each of which contain density modulations-stripes-aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase SOBECs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the combination of the hyperfine and Zeeman structure in the spin-orbit coupled A(1)Sigma(+)(u) = b(3)Pi(u) complex of Rb-87(2). For this purpose, absorption spectroscopy at a magnetic field around B = 1000 G is carried out. We drive optical dipole transitions from the lowest rotational state of an ultracold Feshbach molecule to various vibrational levels with 0(+) symmetry of the A - b complex. In contrast to previous measurements with rotationally excited alkali-dimers, we do not observe equal spacings of the hyperfine levels. In addition, the spectra vary substantially for different vibrational quantum numbers, and exhibit large splittings of up to 160 MHz, unexpected for 0(+) states. The level structure is explained to be a result of the repulsion between the states 0(+) and 0(-) of b(3)Pi(u), coupled via hyperfine and Zeeman interactions. In general, 0(-) and 0(+) have a spin-orbit induced energy spacing Delta, that is different for the individual vibrational states. From each measured spectrum we are able to extract Delta, which otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of Delta in the range of +/- 100 GHz which can be described by coupled channel calculations if a spin-orbit coupling is introduced that is different for 0(-) and 0(+) of b(3)Pi(u).