4 resultados para Rutile TiO2

em Institutional Repository of Leibniz University Hannover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research in solar energy conversion and the associated photoactive materials has attracted continuous interest. Due to its proper electronic band structure, high quantum efficiency, and photonic and chemical innerness, TiO2 has been demonstrated as a versatile oxide semiconductor capable of efficiently utilizing sunlight to produce electrical and chemical energy. Its outstanding physicochemical performances have led to an array of advanced photocatalytic and photoelectrochemical applications including environmental photocatalysis, dye/semiconductor-sensitized solar cell, and solar fuel productions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiwall carbon nanotubes (MWCNTs)/titanium dioxide (P25) composite in different ratios was prepared using simple evaporation and drying process. The composite was characterized by Raman spectroscopy, X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of this composite was investigated using degradation of the Bismarck brown R dye (BBR). An optimal MWCNTs/TiO2 ratio of 0.5% (w/w) was found to achieve the maximum rate of BBR degradation. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO2. The enhancement in photocatalytic activity performance of the MWCNTs/P25 composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNTs act as a dispersing support to control the morphology of TiO2 particles in the MWCNTs/TiO2 composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.