6 resultados para Quantum-state
em Institutional Repository of Leibniz University Hannover
Resumo:
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. Full information of the state of light can only be gathered by a tomographic measurement. Here we demonstrate a tomographic interferometer readout by measuring arbitrary quadratures of the light field exiting a Michelson-Sagnac interferometer that contains a thermally excited high-quality silicon nitride membrane. A readout noise of 1.9 x 10(-16) mHz(-1/2) around the membrane's fundamental oscillation mode at 133 kHz has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.
Resumo:
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.
Resumo:
We investigate protocols for generating a state t-design by using a fixed separable initial state and a diagonal-unitary t-design in the computational basis, which is a t-design of an ensemble of diagonal unitary matrices with random phases as their eigenvalues. We first show that a diagonal-unitary t-design generates a O (1/2(N))-approximate state t-design, where N is the number of qubits. We then discuss a way of improving the degree of approximation by exploiting non-diagonal gates after applying a diagonal-unitary t-design. We also show that it is necessary and sufficient to use O (log(2)(t)) -qubit gates with random phases to generate a diagonal-unitary t-design by diagonal quantum circuits, and that each multi-qubit diagonal gate can be replaced by a sequence of multi-qubit controlled-phase-type gates with discrete-valued random phases. Finally, we analyze the number of gates for implementing a diagonal-unitary t-design by non-diagonal two- and one-qubit gates. Our results provide a concrete application of diagonal quantum circuits in quantum informational tasks.
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.
Resumo:
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.