8 resultados para Quantum Field
em Institutional Repository of Leibniz University Hannover
Resumo:
A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.
Resumo:
In physics, one attempts to infer the rules governing a system given only the results of imperfect measurements. Hence, microscopic theories may be effectively indistinguishable experimentally. We develop an operationally motivated procedure to identify the corresponding equivalence classes of states, and argue that the renormalization group (RG) arises from the inherent ambiguities associated with the classes: one encounters flow parameters as, e.g., a regulator, a scale, or a measure of precision, which specify representatives in a given equivalence class. This provides a unifying framework and reveals the role played by information in renormalization. We validate this idea by showing that it justifies the use of low-momenta n-point functions as statistically relevant observables around a Gaussian hypothesis. These results enable the calculation of distinguishability in quantum field theory. Our methods also provide a way to extend renormalization techniques to effective models which are not based on the usual quantum-field formalism, and elucidates the relationships between various type of RG.
Resumo:
We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat space-like boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence.
Resumo:
We study a quantum Otto engine operating on the basis of a helical spin-1/2 multiferroic chain with strongly coupled magnetic and ferroelectric order parameters. The presence of a finite spin chirality in the working substance enables steering of the cycle by an external electric field that couples to the electric polarization. We observe a direct connection between the chirality, the entanglement and the efficiency of the engine. An electric-field dependent threshold temperature is identified, above which the pair correlations in the system, as quantified by the thermal entanglement, diminish. In contrast to the pair correlations, the collective many-body thermal entanglement is less sensitive to the electric field, and in the high temperature limit converges to a constant value. We also discuss the correlations between the threshold temperature of the pair entanglement, the spin chirality and the minimum of the fidelities in relation to the electric and magnetic fields. The efficiency of the quantum Otto cycle shows a saturation plateau with increasing electric field amplitude.
Resumo:
We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.
Resumo:
We report the suitability of an Einstein-Podolsky-Rosen entanglement source for Gaussian continuous-variable quantum key distribution at 1550 nm. Our source is based on a single continuous-wave squeezed vacuum mode combined with a vacuum mode at a balanced beam splitter. Extending a recent security proof, we characterize the source by quantifying the extractable length of a composable secure key from a finite number of samples under the assumption of collective attacks. We show that distances in the order of 10 km are achievable with this source for a reasonable sample size despite the fact that the entanglement was generated including a vacuum mode. Our security analysis applies to all states having an asymmetry in the field quadrature variances, including those generated by superposition of two squeezed modes with different squeezing strengths.
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
We present transport measurements on a system of two lateral quantum dots in a perpendicular magnetic field. Due to edge channel formation in an open conducting region, the quantum dots are chirally coupled. When both quantum dots are tuned into the Kondo regime simultaneously, we observe a change in the temperature dependence of the differential conductance. This is explained by the RKKY exchange interaction between the two dots. As a function of bias the differential conductance shows a splitting of the Kondo resonance which changes in the presence of RKKY interaction.