2 resultados para QUANTITATIVE CHEMICAL ANALYSIS

em Institutional Repository of Leibniz University Hannover


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The feldspar contents of 373 samples from quaternary sands of Lower Saxony (West Germany) were determined. The samples were taken in all parts of Lower Saxony and represent a selec- tion of quaternary Sediments of different age and genetic origin. 7 different methods of investigation were tested to determine the content of feldspar both qualitative and quantitative. Polarizing mioroscopy, x-ray diffractometry, Chemical analysis and staining fit these aims best. The most important results of these investigations are: - The quarternary Lower Saxonian sands have an average content of 4.4 weight-% potassium feldspars and 0.8 weight-% plagio- clase. - All tested samples have a similar qualitative feldspar compo- sition. There are monocline, tricline and - more rare - per- thitic potassium feldspars with a rather high (greater 80 %) KAlSi3O8 content. From the plagioclase feldspars only albite, oligoclase and little andesine were indicated. - The potassium feldspar content is higher in each sample than the plagioclase content. - The feldspar content depends on age and genetic origin of each sand. Generally spoken the feldspar content lessens with increasing age. Glaciofluviatile and basin sands usually have a higher feldspar content than fluvial or aeolian sands of the same age. - The feldspar content is highly influenced by grain size com- position. A minimum of feldspar content lies between 0.4 and 1 .0 mm grain size. Fine sands usually have a higher feldspar content than coarse sands. The reason for this phenomenon is weathering. - There are no regional differences in the amount of feldspar content. - The feldspar content is not high enough for commercial mining.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis methods for electrochemical etching baths consisting of various concentrations of hydrofluoric acid (HF) and an additional organic surface wetting agent are presented. These electrolytes are used for the formation of meso- and macroporous silicon. Monitoring the etching bath composition requires at least one method each for the determination of the HF concentration and the organic content of the bath. However, it is a precondition that the analysis equipment withstands the aggressive HF. Titration and a fluoride ion-selective electrode are used for the determination of the HF and a cuvette test method for the analysis of the organic content, respectively. The most suitable analysis method is identified depending on the components in the electrolyte with the focus on capability of resistance against the aggressive HF.