2 resultados para Postglacial colonization
em Institutional Repository of Leibniz University Hannover
Resumo:
Coffee berries are known to release several volatile organic compounds, among which is the spiroacetal, conophthorin, an attractant for the coffee berry borer Hypothenemus hampei. Elucidating the effects of other spiroacetals released by coffee berries is critical to understanding their chemo-ecological roles in the host discrimination and colonization process of the coffee berry borer, and also for their potential use in the management of this pest. Here, we show that the coffee berry spiroacetals frontalin and 1,6-dioxaspiro [4.5] decane (referred thereafter as brocain), are also used as semiochemicals by the coffee berry borer for host colonization. Bioassays and chemical analyses showed that crowding coffee berry borers from 2 to 6 females per berry, reduced borer fecundity, which appeared to correlate with a decrease in the emission rates of conophthorin and frontalin over time. In contrast, the level of brocain did not vary significantly between borer-uninfested and infested berries. Brocain was attractive at lower doses, but repellent at higher doses while frontalin alone or in a blend was critical for avoidance. Field assays with a commercial attractant comprising a mixture of ethanol and methanol (1:1), combined with frontalin, confirmed the repellent effect of this compound by disrupting capture rates of H. hampei females by 77% in a coffee plantation. Overall, our results suggest that the levels of frontalin and conophthorin released by coffee berries determine the host colonization behaviour of H. hampei, possibly through a 'push-pull' system, whereby frontalin acts as the 'push' (repellent) and conophthorin acting as the 'pull' (attractant). Furthermore, our results reveal the potential use of frontalin as a repellent for management of this coffee pest.
Resumo:
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.