2 resultados para Phenotypic plasticity
em Institutional Repository of Leibniz University Hannover
Resumo:
The genus Streptobacillus (S.) remained monotypic for almost 90 years until two new species were recently described. The type species, S. moniliformis, is one of the two etiological agents of rat bite fever, an under-diagnosed, worldwide occurring zoonosis. In a polyphasic approach field isolates and reference strains of S. moniliformis, S. hongkongensis, S. felis as well as divergent isolates were characterized by comparison of molecular data (n = 29) and from the majority also by their physiological as well as proteomic properties (n = 22). Based on growth-independent physiological profiling using VITEK2-compact, API ZYM and the Micronaut system fastidious growth-related difficulties could be overcome and streptobacilli could definitively be typed despite generally few differences. While differing in their isolation sites and dates, S. moniliformis isolates were found to possess almost identical spectra in matrix-assisted laser desorption ionization-time of flight mass spectrometry and Fourier transform infrared spectroscopy. Spectroscopic methods facilitated differentiation of S. moniliformis, S. hongkongensis and S. felis as well as one divergent isolate. Sequencing of 16S rRNA gene as well as functional genes groEL, recA and gyrB revealed only little intraspecific variability, but generally proved suitable for interspecies discrimination between all three taxa and two groups of divergent isolates.
Resumo:
Background: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.