2 resultados para Packaging.
em Institutional Repository of Leibniz University Hannover
Resumo:
This report investigates adaptations of electronic packaging methods used to create stacks of these sensors. Four methods were developed and tested to determine the best option in terms of mechanical stability and electrical conductivity of the system. For the first method, a stack is created by way of through paper vias (TPVs), a hole that is cut in the pads of the sensors and then filled with electrically conductive adhesive through the openings on the two sensors to be joined. The second method is called mechanical caulking and connects sensors through pads which have been lined with copper tape backed with conductive adhesive. The connection is created with a small copper rivet which is flattened in place by compressive force. The third method is the stitching method which is inspired by sewing of fabric. A pattern of thin copper wire is stitched on the pad of a sensor that is lined with copper tape backed with conductive adhesive. The wire is then stitched through a second sensor that is treated similarly with copper tape and the stack receives the same pattern through the two layers as was applied to the first sensor alone. The final method is the collapsed daisy chain which is the linear connection of sensors to their neighboring sensors via copper tape backed with conductive adhesive. The row of sensors is then collapsed in an alternating orientation into a single stack.
Resumo:
This paper deals with the development of an advanced parametrical modelling concept for packaging components of a 24 GHz radar sensor IC used in automotive driver assistance systems. For fast and efficient design of packages for system-in-package modules (SiP), a simplified model for the description of parasitic electromagnetic effects within the package is desirable, as 3-D field computation becomes inefficient due to the high density of conductive elements of the various signal paths in the package. By using lumped element models for the characterization of the conductive components, a fast indication of the design's signal-quality can be gained, but so far does not offer enough flexibility to cover the whole range of geometric arrangements of signal paths in a contemporary package. This work pursues to meet the challenge of developing a flexible and fast package modelling concept by defining parametric lumped-element models for all basic signal path components, e.g. bond wires, vias, strip lines, bumps and balls. © Author(s) 2011. CC Attribution 3.0 License.