3 resultados para Multiferroic coupling
em Institutional Repository of Leibniz University Hannover
Resumo:
We study a quantum Otto engine operating on the basis of a helical spin-1/2 multiferroic chain with strongly coupled magnetic and ferroelectric order parameters. The presence of a finite spin chirality in the working substance enables steering of the cycle by an external electric field that couples to the electric polarization. We observe a direct connection between the chirality, the entanglement and the efficiency of the engine. An electric-field dependent threshold temperature is identified, above which the pair correlations in the system, as quantified by the thermal entanglement, diminish. In contrast to the pair correlations, the collective many-body thermal entanglement is less sensitive to the electric field, and in the high temperature limit converges to a constant value. We also discuss the correlations between the threshold temperature of the pair entanglement, the spin chirality and the minimum of the fidelities in relation to the electric and magnetic fields. The efficiency of the quantum Otto cycle shows a saturation plateau with increasing electric field amplitude.
Resumo:
We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.
Resumo:
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC (SOBEC) phase separates into domains, each of which contain density modulations-stripes-aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase SOBECs.