2 resultados para Molecular absorption Spectrophotometry in the ultraviolet-visible
em Institutional Repository of Leibniz University Hannover
Resumo:
The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izana Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.
Resumo:
The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].