2 resultados para Mesenchymal Cells
em Institutional Repository of Leibniz University Hannover
Resumo:
For in vitro differentiation of bone marrow-derived mesenchymal stem cells/mesenchymal stromal cells into osteoblasts by 2-dimensional cell culture a variety of protocols have been used and evaluated in the past. Especially the external phosphate source used to induce mineralization varies considerably both in respect to chemical composition and concentration. In light of the recent findings that inorganic phosphate directs gene expression of genes crucial for bone development, the need for a standardized phosphate source in in vitro differentiation becomes apparent. We show that chemical composition (inorganic versus organic phosphate origin) and concentration of phosphate supplementation exert a severe impact on the results of gene expression for the genes commonly used as markers for osteoblast formation as well as on the composition of the mineral formed. Specifically, the intensity of gene expression does not necessarily correlate with a high quality mineralized matrix. Our study demonstrates advantages of using inorganic phosphate instead of beta-glycerophosphate and propose colorimetric quantification methods for calcium and phosphate ions as cost-and time-effective alternatives to X-ray diffraction and Fourier-transform infrared spectroscopy for determination of the calcium phosphate ratio and concentration of mineral matrix formed under in vitro-conditions. We critically discuss the different assays used to assess in vitro bone formation in respect to specificity and provide a detailed in vitro protocol that could help to avoid contradictory results due to variances in experimental design.
Resumo:
Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O-2)) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O-2). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 mu mol/L at 1.5% O-2 to 196 mu mol/L at normoxic 21% O-2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase 3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1 alpha) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.