3 resultados para Massive spin-2
em Institutional Repository of Leibniz University Hannover
Resumo:
We study the combination of the hyperfine and Zeeman structure in the spin-orbit coupled A(1)Sigma(+)(u) = b(3)Pi(u) complex of Rb-87(2). For this purpose, absorption spectroscopy at a magnetic field around B = 1000 G is carried out. We drive optical dipole transitions from the lowest rotational state of an ultracold Feshbach molecule to various vibrational levels with 0(+) symmetry of the A - b complex. In contrast to previous measurements with rotationally excited alkali-dimers, we do not observe equal spacings of the hyperfine levels. In addition, the spectra vary substantially for different vibrational quantum numbers, and exhibit large splittings of up to 160 MHz, unexpected for 0(+) states. The level structure is explained to be a result of the repulsion between the states 0(+) and 0(-) of b(3)Pi(u), coupled via hyperfine and Zeeman interactions. In general, 0(-) and 0(+) have a spin-orbit induced energy spacing Delta, that is different for the individual vibrational states. From each measured spectrum we are able to extract Delta, which otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of Delta in the range of +/- 100 GHz which can be described by coupled channel calculations if a spin-orbit coupling is introduced that is different for 0(-) and 0(+) of b(3)Pi(u).
Resumo:
Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Echo (MESE; serving as a reference), a T2-prepared balanced Steady State Free Precession (T2prep) and a Gradient Spin Echo sequence. For the subsequent in vivo study, 12 healthy volunteers were examined on a clinical 1.5 T scanner. The three T2-mapping sequences were performed at three short-axis slices. Global myocardial T2 relaxation times were calculated and statistical analysis was performed. For assessment of pixel-by-pixel homogeneity, the number of segments showing an inhomogeneous T2 value distribution, as defined by a pixel SD exceeding 20 % of the corresponding observed T2 time, was counted. Results: Phantom experiments showed a greater difference of measured T2 values between T2prep and MESE than between GraSE and MESE, especially for species with low T1 values. Both, GraSE and T2prep resulted in an overestimation of T2 times compared to MESE. In vivo, significant differences between mean T2 times were observed. In general, T2prep resulted in lowest (52.4 +/- 2.8 ms) and GraSE in highest T2 estimates (59.3 +/- 4.0 ms). Analysis of pixel-by-pixel homogeneity revealed the least number of segments with inhomogeneous T2 distribution for GraSE-derived T2 maps. Conclusions: The GraSE sequence is a fast and robust sequence, combining advantages of both MESE and T2prep techniques, which promises to enable improved clinical applicability of T2-mapping in the future. Our study revealed significant differences of derived mean T2 values when applying different sequence designs. Therefore, a systematic comparison of different cardiac T2-mapping sequences and the establishment of dedicated reference values should be the goal of future studies.
Resumo:
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.