2 resultados para MULTI-ELEMENT ANALYSES
em Institutional Repository of Leibniz University Hannover
Resumo:
Background: The use of artificial endoprostheses has become a routine procedure for knee and hip joints while ankle arthritis has traditionally been treated by means of arthrodesis. Due to its advantages, the implantation of endoprostheses is constantly increasing. While finite element analyses (FEA) of strain-adaptive bone remodelling have been carried out for the hip joint in previous studies, to our knowledge there are no investigations that have considered remodelling processes of the ankle joint. In order to evaluate and optimise new generation implants of the ankle joint, as well as to gain additional knowledge regarding the biomechanics, strain-adaptive bone remodelling has been calculated separately for the tibia and the talus after providing them with an implant. Methods: FE models of the bone-implant assembly for both the tibia and the talus have been developed. Bone characteristics such as the density distribution have been applied corresponding to CT scans. A force of 5,200 N, which corresponds to the compression force during normal walking of a person with a weight of 100 kg according to Stauffer et al., has been used in the simulation. The bone adaptation law, previously developed by our research team, has been used for the calculation of the remodelling processes. Results: A total bone mass loss of 2% in the tibia and 13% in the talus was calculated. The greater decline of density in the talus is due to its smaller size compared to the relatively large implant dimensions causing remodelling processes in the whole bone tissue. In the tibia, bone remodelling processes are only calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in the talus can be expected. There is a high agreement between the simulation results in the distal tibia and the literature regarding. Conclusions: In this study, strain-adaptive bone remodelling processes are simulated using the FE method. The results contribute to a better understanding of the biomechanical behaviour of the ankle joint and hence are useful for the optimisation of the implant geometry in the future.
Resumo:
The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.