2 resultados para Landwirthschaftlicher Central-Verein der Provinz Sachsen
em Institutional Repository of Leibniz University Hannover
Resumo:
Any safety assessment of a permanent repository for radioactive waste has to include an analysis of the geomechanical stability of the repository and integrity of the geological barrier. Such an analysis is based on geological and engineering geological studies of the site, on laboratory and in-situ experiments, and on numerical calculations. Central part of the safety analysis is the geomechanical modelling of the host rock. The model should simulate as closely as possible the conditions at the site and the behaviour of the rock (e.g., geology, repository geometry, initial rock stress, and constitutive models). On the basis of the geomechanical model numerical calculations are carried out using the finite-element method and an appropriate discretization of the repository and the host rock. The assessment of the repository stability and the barrier integrity is based on calculated stress and deformation and on the behaviour of the host rock measured and observed in situ. An example of the geomechanical analysis of the stability and integrity of the Bartensieben mine, a former salt mine, is presented. This mine is actually used as a repository for low level radioactive waste. The example includes all necessary steps of geological, engineering geological, and geotechnical investigations.
Resumo:
Up to now the bear remains from the "Einhornhöhle,, Cave near Scharzfeld at the foot of the Harz Mountains have been aseribed to the species "Ursus spelaeus" without undertaking comprehensive studies. Owing to an erroneous Classification of the gravel deposits covering part of the cave floor into the Middle Terrace of the Oder Rivulet, the fossil-bearing strata have been assigned to the Eemian Interglacial. RODE, who included a part of the Scharzfeld teeth in his treatise on teeth of the bears, has stated arctoidal features in their formation apart from certain specializations. He arrived at the conclusion that the Scharzfeld Bear differs more pronouncedly from all Central European Cave Bears he had investigated than the same differ from each other, and he named the Scharzfeld Bear: "Ursus spelaeus var. hercynica". The geological exploration of the Einhornhöhle Cave and of its environs carried out by DUPHORN in 196? resulted in the aforesaid gravels pertaining to a terrace of a Pre-Elster- Glaciation age; according to DUPHORN the fossil-bearing Sediments were deposited in a Pre-Elster-Glaciation ffarm- Climate Period. The very sparse aceompanying fauna does not contain any Stratigraphie key form; arctic elements and members of an interglacial forest fauna are missing. Its composition teils in favour of a dry, yet not too cool period of the Pleistocene, which is younger than the Villa- franchium. Consequently the cave must have been taken pos- session of for settling in the Cromerian Interglacial. The investigation of the bear remains has led to the result that, in all systematically .important teeth and skeleton characteristics, the Scharzfeld Bear shows either concor- dance with Ursus deningeri or greater analogy to the same than to Ursus spelaeus; in a few properties it even appears somewhat more primitive than Ursus deningeri. Therefore the bears of the Einhornhöhle Cave belong to the species "Ursus deningeri v. REICHENAU 1906". In the frontal teeth certain specializations occur. However, in view to the great varia- bility of the deningeri-"rassenkreis" there does not seem to be a justification for establishing a subspecies of its own. Whereas up to now nothing had been known in respect of the hibernation habits of Ursus deningeri, there has for the first time been furnished proof that an Ursus deningeri population had oecologically become "cave" bears. Consequently this specialization, as the onset and cause of which the Elster Glaciation was up to now considered, must already be originating in older cold epochs.