4 resultados para Låt den rätte komma in

em Institutional Repository of Leibniz University Hannover


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Elfas, Ahlsburg, and Salzderhelden overthrusts have been considered for a long time to be halotectonic structures caused by diapiric rise of Zechstein salt into thrust planes and other zones of weakness in the overlying rocks. Much of the Markoldendorf syncline between the overthrusts is covered by Quaternary deposits. The structure of the syncline and its western and southern boundaries were mapped with the help of many boreholes and micropalaeontological dating during remapping of the 1 : 25 000 geological sheet 4124 (Dassel). The Ahlsburg overthrust has now been shown to continue to the NW and to lead into the Lüthorst graben, which truncates the syncline in the west and passes into the crestal fault of the Elfas anticline. Figure 6 shows the NW-SE trending faults bounding three blocks which, according to seismic interpretation (Geotectonic Atlas 1996), have moved several times, in some areas in opposite senses. The NNE-SSW-trending grabens act as hinges, separating the NW-SE faults into sections that have undergone different movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Am Osthang des Eggegebirges zwischen Horn-Bad-Meinberg und Langeland ist der Lias vom Hettangium bis zum Sinemurium in meist lückenhaften Aufschlüssen erhalten. Aus den Teilprofilen wurde in dieser Arbeit ein Normalprofil zusammengestellt. Die Liasschichten sind ihrer beckenrandnahen Lage entsprechend kalkig, mergelig und tonig mit unterschiedlich hohen Anteilen von terrigenem Detritus ausgebildet. Aufgrund lithologischer Unterschiede wurden verschiedene Gesteinstypen klassifiziert und beschrieben und das Normalprofil in fünf petrographische Abschnitte unterteilt. Die orthostratigraphische Einstufung erfolgte mit Ammoniten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hainholz quarry in the Osterwald hills of NW-Germany is the most impressive outcrop in the Lower Saxony Basin exposing Late Jurassic (Korallenoolith, Oxfordian) coral buildups. The Korallenoolith deposits in the quarry commence with a oolitic sequence about 20 m thick which is limited by a distinctive hardground at its top. This sequence is overlain by the so called “Obere Korallenbank”-Member about 13 m in thickness which is mainly build up by coral reef complexes. Throughout a lateral extend of about 400 m exposed in the quarry, the Obere Korallenbank Member shows numerous pillar-shaped reefal build ups which are flanked by a reefal debris limestone. The coral fauna of the in situ reefal bioconstructions comprises not less than 37 taxa most of which have been described from the Lower Saxony Basin for the first time. Probably, the pillar-shaped reefs formed a small positive relief of only a few dm against the debris deposits during deposition. The interreef debris limestones in the lower and middle part of the Obere Korallenbank Member show three intercalated biostromal coral layers. In the upper part of the member, the interreef facies is represented by a mikritic peloidal limestone rich in sponge remains and, unusual in such a depositional environment, ammonites (Dichotomo-sphinctes bifurcatoides, D. sp.). Additionaly, at the top of of the peloidal limestone a layer enriched in nerineids and other gastropods limits the reefal constructions of the Obere Korallenbank Member against the overlying “humeralis-Oolith” sequence. On the basis of the facies development of this depositional sequence the reef formation in relation to sealevel changes is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any safety assessment of a permanent repository for radioactive waste has to include an analysis of the geomechanical stability of the repository and integrity of the geological barrier. Such an analysis is based on geological and engineering geological studies of the site, on laboratory and in-situ experiments, and on numerical calculations. Central part of the safety analysis is the geomechanical modelling of the host rock. The model should simulate as closely as possible the conditions at the site and the behaviour of the rock (e.g., geology, repository geometry, initial rock stress, and constitutive models). On the basis of the geomechanical model numerical calculations are carried out using the finite-element method and an appropriate discretization of the repository and the host rock. The assessment of the repository stability and the barrier integrity is based on calculated stress and deformation and on the behaviour of the host rock measured and observed in situ. An example of the geomechanical analysis of the stability and integrity of the Bartensieben mine, a former salt mine, is presented. This mine is actually used as a repository for low level radioactive waste. The example includes all necessary steps of geological, engineering geological, and geotechnical investigations.