2 resultados para Equivariant Euler characteristic

em Institutional Repository of Leibniz University Hannover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.