3 resultados para Dirichlet and Neumann boundary conditions

em Institutional Repository of Leibniz University Hannover


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D-3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z(4) parafermion or a M-(5,M-6) minimal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are several numerical investigations on bone remodelling after total hip arthroplasty (THA) on the basis of the finite element analysis (FEA). For such computations certain boundary conditions have to be defined. The authors chose a maximum of three static load situations, usually taken from the gait cycle because this is the most frequent dynamic activity of a patient after THA. Materials and methods: The numerical study presented here investigates whether it is useful to consider only one static load situation of the gait cycle in the FE calculation of the bone remodelling. For this purpose, 5 different loading cases were examined in order to determine their influence on the change in the physiological load distribution within the femur and on the resulting strain-adaptive bone remodelling. First, four different static loading cases at 25%, 45%, 65% and 85% of the gait cycle, respectively, and then the whole gait cycle in a loading regime were examined in order to regard all the different loadings of the cycle in the simulation. Results: The computed evolution of the apparent bone density (ABD) and the calculated mass losses in the periprosthetic femur show that the simulation results are highly dependent on the chosen boundary conditions. Conclusion: These numerical investigations prove that a static load situation is insufficient for representing the whole gait cycle. This causes severe deviations in the FE calculation of the bone remodelling. However, accompanying clinical examinations are necessary to calibrate the bone adaptation law and thus to validate the FE calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang-Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.