2 resultados para Coupled quantum dots
em Institutional Repository of Leibniz University Hannover
Resumo:
We present transport measurements on a system of two lateral quantum dots in a perpendicular magnetic field. Due to edge channel formation in an open conducting region, the quantum dots are chirally coupled. When both quantum dots are tuned into the Kondo regime simultaneously, we observe a change in the temperature dependence of the differential conductance. This is explained by the RKKY exchange interaction between the two dots. As a function of bias the differential conductance shows a splitting of the Kondo resonance which changes in the presence of RKKY interaction.
Resumo:
Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.