4 resultados para Chu Spaces
em Institutional Repository of Leibniz University Hannover
Resumo:
We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
We classify the N = 4 supersymmetric AdS(5) backgrounds that arise as solutions of five-dimensional N = 4 gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/ (U(1) x SU(m)) and discuss our results regarding holographically dual N = 2 SCFTs and their conformal manifolds.
Resumo:
We present solutions of the Yang–Mills equation on cylinders R×G/HR×G/H over coset spaces of odd dimension 2m+12m+1 with Sasakian structure. The gauge potential is assumed to be SU(m)SU(m)-equivariant, parameterized by two real, scalar-valued functions. Yang–Mills theory with torsion in this setup reduces to the Newtonian mechanics of a point particle moving in R2R2 under the influence of an inverted potential. We analyze the critical points of this potential and present an analytic as well as several numerical finite-action solutions. Apart from the Yang–Mills solutions that constitute SU(m)SU(m)-equivariant instanton configurations, we construct periodic sphaleron solutions on S1×G/HS1×G/H and dyon solutions on iR×G/HiR×G/H.
Resumo:
Motivated by a recent claim by Muller et al (2010 Nature 463 926-9) that an atom interferometer can serve as an atom clock to measure the gravitational redshift with an unprecedented accuracy, we provide a representation-free description of the Kasevich-Chu interferometer based on operator algebra. We use this framework to show that the operator product determining the number of atoms at the exit ports of the interferometer is a c-number phase factor whose phase is the sum of only two phases: one is due to the acceleration of the phases of the laser pulses and the other one is due to the acceleration of the atom. This formulation brings out most clearly that this interferometer is an accelerometer or a gravimeter. Moreover, we point out that in different representations of quantum mechanics such as the position or the momentum representation the phase shift appears as though it originates from different physical phenomena. Due to this representation dependence conclusions concerning an enhanced accuracy derived in a specific representation are unfounded.