3 resultados para Auxin Receptor

em Institutional Repository of Leibniz University Hannover


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABP1 and TIR1/AFBs are known as auxin receptors. ABP1 is linked to auxin responses several of which are faster than 10 min. TIR1 regulates auxin-induced transcription of early auxin genes also within minutes. We use transcription of such TIR1-dependent genes as indicator of TIR1 activity to show the rapid regulation of TIR1 by exogenous auxin. To this end, we used quantification of transcription of a set of fifteen early auxin-induced reporter genes at t = 10 and t = 30 min to measure this as a TIR1-dependent auxin response. We conducted this study in 22 mutants of auxin transporters (pin5, abcb1, abcb19, and aux1/lax3), protein kinases and phosphatases (ibr5, npr1, cpk3, CPK3-OX, d6pk1, d6pkl1-1, d6pkl3-2, d6pkl1-1/d6pkl2-2, and d6pkl1-1/d6pkl3-2), of fatty acid metabolism (fad2-1, fad6-1, ssi2, lacs4, lacs9, and lacs4/lacs9) and receptors (tir1, tir1/afb2, and tir1/afb3) and compared them to the wild type. After 10 min auxin application, in 18 out of 22 mutants mis-regulated expression of at least one reporter was found, and in 15 mutants transcription of two-to-three out of five selected auxin reporter genes was mis-regulated. After 30 min of auxin application to mutant plants, mis-regulation of reporter genes ranged from one to 13 out of 15 tested reporter genes. Those genes chosen as mutants were themselves not regulated in their expression by auxin for at least 1 h, excluding an influence of TIR1/AFBs on their transcription. The expression of TIR1/AFB genes was also not modulated by auxin for up to 3 h. Together, this excludes a feedback or feedforward of these mutant genes/proteins on TIR1/AFBs output of transcription in this auxin-induced response. However, an auxin-induced response needed an as yet unknown auxin receptor. We suggest that the auxin receptor necessary for the fast auxin-induced transcription modulation could be, instead, ABP1. The alternative hypothesis would be that auxin-induced expression of a protein, initiated by TIR1/AFBs receptors, could initiate these responses and that this unknown protein regulated TIR1/AFB activities within 10 min.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R: FR light-enriched white light (WL) condition more strongly than in the high red: FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R-and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three types of phospholipases, phospholipase D, secreted phospholipase A2, and patatin-related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage to auxin receptors ABP1 or TIR1, their rapid activation or post-translational activation mechanisms, and downstream functions regulated by these phospholipases is reviewed and discussed. Only for pPLA all aspects are known at least to some detail. Evidence is gathered that all these signal reactions are located in the cytosol and seem to merge on regulation of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that no physical contact between components of the ABP1-triggered cytosolic pathways and TIR1-triggered nuclear pathways of signaling is necessary to perform this.