2 resultados para 020603 Quantum Information Computation and Communication

em Institutional Repository of Leibniz University Hannover


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biobanks represent key resources for clinico-genomic research and are needed to pave the way to personalised medicine. To achieve this goal, it is crucial that scientists can securely access and share high-quality biomaterial and related data. Therefore, there is a growing interest in integrating biobanks into larger biomedical information and communication technology (ICT) infrastructures. The European project p-medicine is currently building an innovative ICT infrastructure to meet this need. This platform provides tools and services for conducting research and clinical trials in personalised medicine. In this paper, we describe one of its main components, the biobank access framework p-BioSPRE (p-medicine Biospecimen Search and Project Request Engine). This generic framework enables and simplifies access to existing biobanks, but also to offer own biomaterial collections to research communities, and to manage biobank specimens and related clinical data over the ObTiMA Trial Biomaterial Manager. p-BioSPRE takes into consideration all relevant ethical and legal standards, e.g., safeguarding donors’ personal rights and enabling biobanks to keep control over the donated material and related data. The framework thus enables secure sharing of biomaterial within open and closed research communities, while flexibly integrating related clinical and omics data. Although the development of the framework is mainly driven by user scenarios from the cancer domain, in this case, acute lymphoblastic leukaemia and Wilms tumour, it can be extended to further disease entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.