93 resultados para Mitochondria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boswellia papyrifera and Boswellia carterii, known as Arabian incense, diffuses smoke, contaminating the air, which adversely affects human health. Therefore, this study was designed to ascertain the effect of these plants on histopathological and ultrastructure changes in cauda epididymis of Albino rats. Animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Our study indicates a significant reduction in epithelial heights. Cells showed signs of degeneration. The ultrastructural study revealed that the cauda epididymis was affected, including its cell types. Furthermore, a decrease in the size of mitochondria, Golgi complex, and both ERs was observed. In all treated groups, plasma fructose decreased considerably, indicating the sign of reduced energy, vital for motility and other sperm functions. The results of this study suggest that these plants systematically affect cauda epididymal cell types and its lumen through its potential toxicity. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Taxol (generic name paclitaxel), a plant-derived antineoplastic agent, used widely against breast, ovarian and lung cancer, was originally isolated from the bark of the Pacific yew, Taxus brevifolia. The limited supply of the drug has prompted efforts to find alternative sources, such as chemical synthesis, tissue and cell cultures of the Taxus species both of which are expensive and yield low levels. Fermentation processes with microorganisms would be the methods of choice to lower the costs and increase yields. Previously we have reported that F. solani isolated from T. celebica produced taxol and its precursor baccatin III in liquid grown cultures J Biosci 33: 259-67, 2008. This study was performed to evaluate the inhibition of proliferation and induction of apoptosis of cancer cell lines by the fungal taxol and fungal baccatin III of F. solani isolated from T. celebica. Methods: Cell lines such as HeLa, HepG2, Jurkat, Ovcar3 and T47D were cultured individually and treated with fungal taxol, baccatin III with or without caspase inhibitors according to experimental requirements. Their efficacy on apoptotic induction was examined. Results: Both fungal taxol and baccatin III inhibited cell proliferation of a number of cancer cell lines with IC50 ranging from 0.005 to 0.2 mu M for fungal taxol and 2 to 5 mu M for fungal baccatin III. They also induced apoptosis in JR4-Jurkat cells with a possible involvement of anti-apoptotic Bcl2 and loss in mitochondrial membrane potential, and was unaffected by inhibitors of caspase-9,-2 or -3 but was prevented in presence of caspase-10 inhibitor. DNA fragmentation was also observed in cells treated with fungal taxol and baccatin III. Conclusions: The cytotoxic activity exhibited by fungal taxol and baccatin III involves the same mechanism, dependent on caspase-10 and membrane potential loss of mitochondria, with taxol having far greater cytotoxic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (Pol gamma A/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of Pol gamma A. Kinetic constants for interactions between Pol gamma A-RECQL4, Pol gamma A-p53 and Pol gamma B-p53 indicate that RECQL4 and p53 are accessory factors for Pol gamma A-Pol gamma B and Pol gamma A-DNA interactions. RECQL4 enhances the binding of Pol gamma A to DNA, thereby potentiating the exonuclease and polymerization activities of Pol gamma A/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. Summary: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria have a central role in the intrinsic pathway of apoptosis and involve activation of several transmembrane channels leading to release of death factors. Reduced expression of a mitochondrial J-protein DnaJC15 was associated with the development of chemoresistance in ovarian cancer cells. DnaJC15 was found to be a part of mitochondrial protein-transport machinery, though its connection with cell death mechanisms is still unclear. In the present study, we have provided evidence towards a novel function of DnaJC15 in regulation of mitochondrial permeability transition pore (MPTP) complex in normal and cancer cells. Overexpression of DnaJC15 resulted in MPTP opening and induction of apoptosis, whereas reduced amount of protein suppressed MPTP activation, upon cisplatin treatment. DnaJC15 was found to exert its proapoptotic function through the essential component of MPTP, cyclophilin D (CypD). Our results reveal a specific role of DnaJC15 in recruitment and coupling of CypD with mitochondrial permeability transition. In summary, our analysis provides first-time insights on the functional connection between mitochondrial inner membrane protein translocation machinery-associated J-protein DnaJC15 and regulation of cell death pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 mu M) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading Delta psi m dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial heat shock protein 60 (Hsp60) is a nuclear encoded gene product that gets post-translationally translocated into the mitochondria. Using multiple approaches such as immunofluorescence experiments, isoelectric point analysis with two-dimensional gel electrophoresis, and mass spectrometric identification of the signal peptide, we show that Hsp60 from Plasmodium falciparum (PfHsp60) accumulates in the parasite cytoplasm during the ring, trophozoite, and schizont stages of parasite development before being imported into the parasite mitochondria. Using co-immunoprecipitation experiments with antibodies specific to cytoplasmic PfHsp90, PfHsp70-1, and PfHsp60, we show association of precursor PfHsp60 with cytoplasmic chaperone machinery. Metabolic labeling involving pulse and chase indicates translocation of the precursor pool into the parasite mitochondrion during chase. Analysis of results obtained with Geldanamycin treatment confirmed precursor PfHsp60 to be one of the clients for PfHsp90. Cytosolic chaperones bind precursor PfHsp60 prior to its import into the mitochondrion of the parasite. Our data suggests an inefficient co-ordination in the synthesis and translocation of mitochondrial PfHsp60 during asexual growth of malaria parasite in human erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.