67 resultados para wireless access point

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a centralized integrated approach for: 1) enhancing the performance of an IEEE 802.11 infrastructure wireless local area network (WLAN), and 2) managing the access link that connects the WLAN to the Internet. Our approach, which is implemented on a standard Linux platform, and which we call ADvanced Wi-fi Internet Service EnhanceR (ADWISER), is an extension of our previous system WLAN Manager (WM). ADWISER addresses several infrastructure WLAN performance anomalies such as mixed-rate inefficiency, unfair medium sharing between simultaneous TCP uploads and downloads, and inefficient utilization of the Internet access bandwidth when Internet transfers compete with LAN-WLAN transfers, etc. The approach is via centralized queueing and scheduling, using a novel, configurable, cascaded packet queueing and scheduling architecture, with an adaptive service rate. In this paper, we describe the design of ADWISER and report results of extensive experimentation conducted on a hybrid testbed consisting of real end-systems and an emulated WLAN on Qualnet. We also present results from a physical testbed consisting of one access point (AP) and a few end-systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we study the performance of client-Access Point (AP) association policies in IEEE 802.11 based WLANs. In many scenarios, clients have a choice of APs with whom they can associate. We are interested in finding association policies which lead to optimal system performance. More specifically, we study the stability of different association policies as a function of the spatial distribution of arriving clients. We find for each policy the range of client arrival rates for which the system is stable. For small networks, we use Lyapunov function methods to formally establish the stability or instability of certain policies in specific scenarios. The RAT heuristic policy introduced in our prior work is shown to have very good stability properties when compared to several other natural policies. We also validate our analytical results by detailed simulation employing the IEEE 802.11 MAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In many IEEE 802.11 WLAN deployments, wireless clients have a choice of access points (AP) to connect to. In current systems, clients associate with the access point with the strongest signal to noise ratio. However, such an association mechanism can lead to unequal load sharing, resulting in diminished system performance. In this paper, we first provide a numerical approach based on stochastic dynamic programming to find the optimal client-AP association algorithm for a small topology consisting of two access points. Using the value iteration algorithm, we determine the optimal association rule for the two-AP topology. Next, utilizing the insights obtained from the optimal association ride for the two-AP case, we propose a near-optimal heuristic that we call RAT. We test the efficacy of RAT by considering more realistic arrival patterns and a larger topology. Our results show that RAT performs very well in these scenarios as well. Moreover, RAT lends itself to a fairly simple implementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the implementation of wireless mesh nodes based on the IEEE 802.11s draft where the motivation is to build a real life mesh network. The mesh nodes developed have mesh, mesh access point and mesh portal functionalities simultaneously. The mesh nodes use different radios for mesh and access point functionalities, thus giving better service to client stations. Both reactive and proactive modes of HWMP are supported. The paper also suggests some measures to enhance the performance of the overall network by reducing the number of PREQs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We focus on the energy spent in radio communication by the stations (STAs) in an IEEE 802.11 infrastructure WLAN. All the STAs are engaged in web browsing, which is characterized by a short file downloads over TCP, with short duration of inactivity or think time in between two file downloads. Under this traffic, Static PSM (SPSM) performs better than CAM, since the STAs in SPSM can switch to low power state (sleep) during think times while in CAM they have to be in the active state all the time. In spite of this gain, performance of SPSM degrades due to congestion, as the number of STAs associated with the access point (AP) increases. To address this problem, we propose an algorithm, which we call opportunistic PSM (OPSM). We show through simulations that OPSM performs better than SPSM under the aforementioned TCP traffic. The performance gain achieved by OPSM over SPSM increases as the mean file size requested by the STAs or the number of STAs associated with the AP increases. We implemented OPSM in NS-2.33, and to compare the performance of OPSM and SPSM, we evaluate the number of file downloads that can be completed with a given battery capacity and the average time taken to download a file.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a Cooperative Opportunistic Automatic Repeat ReQuest (CoARQ) scheme to solve the HOL-blocking problem in infrastructure IEEE 802.11 WLANs. HOL blocking occurs when the head-of-the-line packet at the Access Point (AP) queue blocks the transmission of packets to other destinations resulting in severe throughput degradation. When the AP transmits a packet to a mobile station (STA), some of the nodes in the vicinity can overhear this packet transmission successfully. If the original transmission by the AP is unsuccessful, our CoARQ scheme chooses the station. STA or AP) with the best channel to the intended receiver as a relay and the chosen relay forwards the AP's packet to the receiver. This way, our scheme removes the bottleneck at the AP, thereby providing significant improvements in the throughput of the AP. We analyse the performance of our scheme in an infrastructure WLAN under a TCP controlled file download scenario and our analytical results are further validated by extensive simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of space-frequency block coded (SFBC) OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both inter-symbol interference (ISI) as well as inter-carrier interference (10). ISI occurs due to the violation of the 'quasi-static' fading assumption caused due to frequency- and/or time-selectivity of the channel. In addition, ICI occurs due to time-selectivity of the channel which results in loss of orthogonality among the subcarriers. In this paper, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop new scheduling algorithms for the IEEE 802.16d OFDMA/TDD based broadband wireless access system, in which radio resources of both time and frequency slots are dynamically shared by all users. Our objective is to provide a fair and efficient allocation to all the users to satisfy their quality of service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider several WLAN stations associated at rates r(1), r(2), ... r(k) with an Access Point. Each station (STA) is downloading a long file from a local server, located on the LAN to which the Access Point (AP) is attached, using TCP. We assume that a TCP ACK will be produced after the reception of d packets at an STA. We model these simultaneous TCP-controlled transfers using a semi-Markov process. Our analytical approach leads to a procedure to compute aggregate download, as well as per-STA throughputs, numerically, and the results match simulations very well. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile WiMAX is a burgeoning network technology with diverse applications, one of them being used for VANETs. The performance metrics such as Mean Throughput and Packet Loss Ratio for the operations of VANETs adopting 802.16e are computed through simulation techniques. Next we evaluated the similar performance of VANETs employing 802.11p, also known as WAVE (Wireless Access in Vehicular Environment). The simulation model proposed is close to reality as we have generated mobility traces for both the cases using a traffic simulator (SUMO), and fed it into network simulator (NS2) based on their operations in a typical urban scenario for VANETs. In sequel, a VANET application called `Street Congestion Alert' is developed to assess the performances of these two technologies. For this application, TraCI is used for coupling SUMO and NS2 in a feedback loop to set up a realistic simulation scenario. Our inferences show that the Mobile WiMAX performs better than WAVE for larger network sizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a typical enterprise WLAN, a station has a choice of multiple access points to associate with. The default association policy is based on metrics such as Re-ceived Signal Strength(RSS), and “link quality” to choose a particular access point among many. Such an approach can lead to unequal load sharing and diminished system performance. We consider the RAT (Rate And Throughput) policy [1] which leads to better system performance. The RAT policy has been implemented on home-grown centralized WLAN controller, ADWISER [2] and we demonstrate that the RAT policy indeed provides a better system performance.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We consider a setting in which several operators offer downlink wireless data access services in a certain geographical region. Each operator deploys several base stations or access points, and registers some subscribers. In such a situation, if operators pool their infrastructure, and permit the possibility of subscribers being served by any of the cooperating operators, then there can be overall better user satisfaction, and increased operator revenue. We use coalitional game theory to investigate such resource pooling and cooperation between operators.We use utility functions to model user satisfaction, and show that the resulting coalitional game has the property that if all operators cooperate (i.e., form a grand coalition) then there is an operating point that maximizes the sum utility over the operators while providing the operators revenues such that no subset of operators has an incentive to break away from the coalition. We investigate whether such operating points can result in utility unfairness between users of the various operators. We also study other revenue sharing concepts, namely, the nucleolus and the Shapely value. Such investigations throw light on criteria for operators to accept or reject subscribers, based on the service level agreements proposed by them. We also investigate the situation in which only certain subsets of operators may be willing to cooperate.