65 resultados para weed science
em Indian Institute of Science - Bangalore - Índia
Resumo:
Excised stem, leaf segments and whole flower of the allergenic weed P. hysterophorus were cultured on Murashighe and Skoog's basal medium supplemented with hormones. Shoot buds readily formed in the stem callus cultured on MS Medium supplemented with IAA and BAP or Kinetin. The leaf callus formed roots alone in a wide variety of media. Suspension cultures were initiated from the leaf and stem callus. The leaf callus elicited a positive patch test response for delayed hypersensitivity in 4 patients suffering from Parthenium dermatitis, thus indicating its ability to synthesise the allergenic principle(s).
Resumo:
After ensilation, the toxic Compositae weed Parthenium hysterophorus was devoid of the toxic principle parthenin. Laboratory-scale ensilation indicated that no parthenin was detectable after 5 wk of anaerobic fermentation. For animal feeding studies, silage was made on a large scale from Parthenium mixed with maize or from Parthenium alone. Crossbred bull and buffalo bull calves were fed diets containing the silages, or control diet without silage, for 12 wk. The animals consumed both silages with relish, and body weight gains of silage-fed calves did not differ from those of the controls. The digestibilities of dry matter, fibre and nitrogen-free extract were greater with the control diet, but the biological value of proteins tended to be greater with the silage-containing diets. Haematological studies indicated no significant differences between experimental and control groups in selected parameters, except for a reduction in blood urea nitrogen in the animals fed silage. The possible causes for these biochemical alterations are discussed. Since the nutritive value of Parthenium silage compares favourably with the standard diet, and Parthenium seeds collected from the silage did not germinate, we suggest that ensilation can be used as an additional method in the containment and eradication of these plants, which grow wild in India.
Resumo:
Biomethanation of herbaceous biomass feedstock has the potential to provide clean energy source for cooking and other activities in areas where such biomass availability predominates. A biomethanation concept that involves fermentation of biomass residues in three steps, occurring in three zones of the fermentor is described. This approach while attempting take advantage of multistage reactors simplifies the reactor operation and obviates the need for a high degree of process control or complex reactor design. Typical herbaceous biomass decompose with a rapid VFA flux initially (with a tendency to float) followed by a slower decomposition showing balanced process of VFA generation and its utilization by methanogens that colonize biomass slowly. The tendency to float at the initial stages is suppressed by allowing previous days feed to hold it below digester liquid which permits VFA to disperse into the digester liquid without causing process inhibition. This approach has been used to build and operate simple biomass digesters to provide cooking gas in rural areas with weed and agro-residues. With appropriate modifications, the same concept has been used for digesting municipal solid wastes in small towns where large fermentors are not viable. With further modifications this concept has been used for solid-liquid feed fermentors. Methanogen colonized leaf biomass has been used as biofilm support to treat coffee processing wastewater as well as crop litter alternately in a year. During summer it functions as a biomass based biogas plants operating in the three-zone mode while in winter, feeding biomass is suspended and high strength coffee processing wastewater is let into the fermentor achieving over 90% BOD reduction. The early field experience of these fermentors is presented.
Resumo:
Abstract is not available.
Resumo:
Modern science, which was an indigenous product of Western culture, is now being practised in many non-Western countries. This paper discusses the peculiar social, cultural and intellectual problems which scientists of these non-Western countries face in adopting Western science in their situations, with special reference to India. It is pointed out that, in addition to money and communication, it is necessary to have a proper psychological gestalt to practise science satisfactorily. The author analyzes his experience as a physics student in India and in the United States to clarify the nature of this psychological gestalt, and to explain what makes it difficult for non-Western scientists to acquire it.
Resumo:
Development of a new class of single pan high efficiency, low emission stoves, named gasifier stoves, that promise constant power that can be controlled using any solid biomass fuel in the form of pellets is reported here. These stoves use battery-run fan-based air supply for gasification (primary air) and for combustion (secondary air).Design with the correct secondary air flow ensures near-stoichiometric combustion that allows attainment of peak combustion temperatures with accompanying high water boiling efficiencies (up to 50% for vessels of practical relevance) and very low emissions (of carbon monoxide, particulate matter and oxides of nitrogen). The use of high density agro-residue based pellets or coconut shell pieces ensures operational duration of about an hour or more at power levels of 3 kWth (similar to 12 g/min). The principles involved and the optimization aspects of the design are outlined. The dependence of efficiency and emissions on the design parameters are described. The field imperatives that drive the choice of the rechargeable battery source and the fan are brought out. The implications of developments of Oorja-Plus and OorjaSuper stoves to the domestic cooking scenario of India are briefly discussed. The process development, testing and internal qualification tasks were undertaken by Indian Institute of Science. Product development and the fuel pellet production were dealt with by First Energy Private Ltd.Close interaction at several times during this period has helped progress the project from the laboratory to large scale commercial operation. At this time, over four hundred thousand stoves and 30 kilotonnes fuel have been sold in four states in India.