12 resultados para waterside city
em Indian Institute of Science - Bangalore - Índia
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Different seismic hazard components pertaining to Bangalore city,namely soil overburden thickness, effective shear-wave velocity, factor of safety against liquefaction potential, peak ground acceleration at the seismic bedrock, site response in terms of amplification factor, and the predominant frequency, has been individually evaluated. The overburden thickness distribution, predominantly in the range of 5-10 m in the city, has been estimated through a sub-surface model from geotechnical bore-log data. The effective shear-wave velocity distribution, established through Multi-channel Analysis of Surface Wave (MASW) survey and subsequent data interpretation through dispersion analysis, exhibits site class D (180-360 m/s), site class C (360-760 m/s), and site class B (760-1500 m/s) in compliance to the National Earthquake Hazard Reduction Program (NEHRP) nomenclature. The peak ground acceleration has been estimated through deterministic approach, based on the maximum credible earthquake of M-W = 5.1 assumed to be nucleating from the closest active seismic source (Mandya-Channapatna-Bangalore Lineament). The 1-D site response factor, computed at each borehole through geotechnical analysis across the study region, is seen to be ranging from around amplification of one to as high as four times. Correspondingly, the predominant frequency estimated from the Fourier spectrum is found to be predominantly in range of 3.5-5.0 Hz. The soil liquefaction hazard assessment has been estimated in terms of factor of safety against liquefaction potential using standard penetration test data and the underlying soil properties that indicates 90% of the study region to be non-liquefiable. The spatial distributions of the different hazard entities are placed on a GIS platform and subsequently, integrated through analytical hierarchal process. The accomplished deterministic hazard map shows high hazard coverage in the western areas. The microzonation, thus, achieved is envisaged as a first-cut assessment of the site specific hazard in laying out a framework for higher order seismic microzonation as well as a useful decision support tool in overall land-use planning, and hazard management. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modelling of city traffic involves capturing of all the dynamics that exist in real-time traffic. Probabilistic models and queuing theory have been used for mathematical representation of the traffic system. This paper proposes the concept of modelling the traffic system using bond graphs wherein traffic flow is based on energy conservation. The proposed modelling approach uses switched junctions to model complex traffic networks. This paper presents the modelling, simulation and experimental validation aspects.
Resumo:
In the absence of near field strong motion records, the level of ground motion during the devastating 26 January 2001 earthquake has to be found by indirect means. For the city of Bhuj, three broad band velocity time histories have been recorded by India Meteorological Department. In this paper these data are processed to obtain an estimate of strong ground motion at Bhuj. It is estimated that the peak ground acceleration at Bhuj was of the order of 0.38 g. Ground motion in the surrounding region is indirectly found using available spectral response recorder (SRR) data. These instrument-based results are compared with analytical results obtained from a half-space regional model.
Resumo:
Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps has been attempted using Geographical Information System (GIS). GIS will provide an effective solution for integrating different layers of information thus providing a useful input for city planning and in particular input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. For the seismic microzonation, geotechnical site characterization need to be assessed at local scale (micro level), which is further used to assess of the site response and liquefaction susceptibility of the sites. Seismotectonic atlas of the area having a radius of 350km around Bangalore has been prepared with all the seismogenic sources and historic earthquake events (a catalogue of about 1400 events since 1906). We have attempted to carryout the site characterization of Bangalore by collating conventional geotechnical boreholes data (about 900 borehole data with depth) and integrated in GIS. 3-D subsurface model of Bangalore prepared using GIS is shown in Figure 1.Further, Shear wave velocity survey based on geophysical method at about 60 locations in the city has been carried out in 220 square Kms area. Site response and local site effects have been evaluated using 1-dimensional ground response analysis. Spatial variability of soil overburden depths, ground surface Peak Ground Acceleration’s(PGA), spectral acceleration for different frequencies, liquefaction susceptibility have been mapped in the 220 sq km area using GIS.ArcInfo software has been used for this purpose. These maps can be used for the city planning and risk & vulnerability studies. Figure 2 shows a map of peak ground acceleration at rock level for Bangalore city. Microtremor experiments were jointly carried out with NGRI scientists at about 55 locations in the city and the predominant frequency of the overburden soil columns were evaluated.
Resumo:
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents exploratory and statistical analyses of the activity-travel behaviour of non-workers in Bangalore city in India. The study summarises the socio-demographic characteristics as well as the activity-travel behaviour of non-workers using a primary activity-travel survey data collected by the authors. Where possible, the research also compares the analysis findings with the case studies on activity-travel behaviour of non-workers, carried out in developed and developing countries. This gives an opportunity to understand the differences/similarities in the activity-travel behaviour of non-workers across diverse socio-cultural settings. The preliminary exploratory analysis shed light on the differences in activity participation, trip chaining, time-of-day preference for trip departure, and mode use behaviour of non-workers in Bangalore city. Statistical models were developed for investigating the effects of individual and household socio-demographics, land use parameters, and travel context attributes on activity participation, trip chaining, time-of-day choice, and mode choice decisions of non-workers. A few important results of the analysis are the influence of viewing television at home on out-of-home activity participation and trip-chaining behaviour, and the impact of in-home maintenance activity duration on time-of-day choice. Further, based on the findings of the initial analyses, an attempt has been made in this study to develop an integrated model that links time allocation, time-of-day choice, and trip chaining behaviour of non-workers. The study also discusses the implications of the research findings for transportation planning and policy for Bangalore city. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Studies on travel survey instrument design and administration in the context of Indian cities are limited despite the fact that these aspects of travel survey face unique challenges here when compared to the cities in the developed world. Here we report results of a pilot survey conducted for evaluating the performances, alternative diary formats and survey administration techniques in Bengaluru city, India. The study proposes two diary formats. `Diary-1' is in day-planner format and is a variant of the one reported earlier in the literature. `Diary-2' is derived as a combination of `Diary-1' and the trip-based diaries widely applied in Indian cities. `Face-to-face', and `drop-off and pick-up' methods of survey administration are considered for retrieving the activity-travel information of individuals. Evidence appears to be strong that diary-2 is preferable to diary-1 for collecting the travel details of individuals. The comparison of the retrieval methods suggests that the face-to-face method of instrument administration is superior to the drop-off and pick-up method in terms of higher response rates and minimum recording errors.