9 resultados para wastewater treatment plants

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STOAT has been extensively used for the dynamic simulation of an activated sludge based wastewater treatment plant in the Titagarh Sewage Treatment Plant, near Kolkata, India. Some alternative schemes were suggested. Different schemes were compared for the removal of Total Suspended Solids (TSS), b-COD, ammonia, nitrates etc. A combination of IAWQ#1 module with the Takacs module gave best results for the existing scenarios of the Titagarh Sewage Treatment Plant. The modified Bardenpho process was found most effective for reducing the mean b-COD level to as low as 31.4 mg/l, while the mean TSS level was as high as 100.98 mg/l as compared to the mean levels of TSS (92 62 mg/l) and b-COD (92.0 mg/l) in the existing plant. Scheme 2 gave a better scenario for the mean TSS level bringing it down to a mean value of 0.4 mg/l, but a higher mean value for the b-COD level at 54.89 mg/l. The Scheme Final could reduce the mean TSS level to 2.9 mg/l and the mean b-COD level to as low as 38.8 mg/l. The Final Scheme looks to be a technically viable scheme with respect to the overall effluent quality for the plant. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeration experiments were conducted in different sized baffled and unbaffled circular surface aeration tanks to study their relative performance on oxygen transfer process while aerating the same volume of water. Experiments were carried out with the objective of ascertaining the effect of baffle on oxygen transfer coefficient k. Simulation equations govern the oxygen transfer coefficient with the theoretical power per unit volume, X and actual power per unit volume, P-V. It has been found that, for any given X, circular tanks with baffle produce higher values of k than unbaffled circular tanks, but in terms of actual power consumption unbaffled tanks consume less power when compared to baffled circular tanks to achieve the same value of k. It has been found that in terms of energy consumption, epsilon, baffled tanks consume more energy than unbaffled tanks at any value of X. This suggests that the unbaffled circular tank gives a better performance as far as energy consumption is concerned and hence better economy. An example illustrating the energy conservation to aerate the same volume of water in both types of aerators is given. (c) 2007 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapidly depleting stocks of fossil fuels and increasing greenhouse gas (GHG) emissions have necessitated the exploration of cost effective sustainable energy sources focussing on biofuels through algae. Abundant wastewaters generated in urban localities every day provide the nourishment to nurture algae for biofuel generation. The present communication focuses on the lipid prospects of algae grown in wastewater systems. Euglena sp., Spirogyra sp. and Phormidium sp. were collected from selected locations of sewage fed urban lakes and sewage treatment plants of Bangalore and Mysore. The total lipid content of Euglena sp. was higher (24.6%) compared to Spirogyra sp. (18.4%) followed by Phormidium sp. (8.8%) and their annual lipid yield potential was 6.52, 1.94 and 2.856 t/ha/year, respectively. These species showed higher content of fatty acids (palmitate, stearate followed by oleic and linoleic acids) with the desirable biofuel properties. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion-dissolution at extreme pH conditions, together with the formation of inert Zn(OH)(2) during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.