4 resultados para vulnerability analysis

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earthquakes cause massive road damage which in turn causes adverse effects on the society. Previous studies have quantified the damage caused to residential and commercial buildings; however, not many studies have been conducted to quantify road damage caused by earthquakes. In this study, an attempt has been made to propose a new scale to classify and quantify the road damage due to earthquakes based on the data collected from major earthquakes in the past. The proposed classification for road damage due to earthquake is called as road damage scale (RDS). Earthquake details such as magnitude, distance of road damage from the epicenter, focal depth, and photographs of damaged roads have been collected from various sources with reported modified Mercalli intensity (MMI). The widely used MMI scale is found to be inadequate to clearly define the road damage. The proposed RDS is applied to various reported road damage and reclassified as per RDS. The correlation between RDS and earthquake parameters of magnitude, epicenter distance, hypocenter distance, and combination of magnitude with epicenter and hypocenter distance has been studied using available data. It is observed that the proposed RDS correlates well with the available earthquake data when compared with the MMI scale. Among several correlations, correlation between RDS and combination of magnitude and epicenter distance is appropriate. Summary of these correlations, their limitations, and the applicability of the proposed scale to forecast road damages and to carry out vulnerability analysis in urban areas is presented in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change vulnerability profiles are developed at the district level for agriculture, water and forest sectors for the North East region of India for the current and projected future climates. An index-based approach was used where a set of indicators that represent key sectors of vulnerability (agriculture, forest, water) is selected using the statistical technique principal component analysis. The impacts of climate change on key sectors as represented by the changes in the indicators were derived from impact assessment models. These impacted indicators were utilized for the calculation of the future vulnerability to climate change. Results indicate that majority of the districts in North East India are subject to climate induced vulnerability currently and in the near future. This is a first of its kind study that exhibits ranking of districts of North East India on the basis of the vulnerability index values. The objective of such ranking is to assist in: (i) identifying and prioritizing the most vulnerable sectors and districts; (ii) identifying adaptation interventions, and (iii) mainstreaming adaptation in development programmes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper critically evaluates the vulnerability of Indian cities to climate change in the context of sustainable development. City-scale indicators are developed for multiple dimensions of security and vulnerability. Factor analysis is employed to construct a vulnerability ranking of 46 major Indian cities. The analysis reveals that high aggregate levels of wealth do not necessarily make a city less vulnerable. Two, cities with diversified economic opportunities could adapt better to the new risks posed by climate change, than cities with unipolar opportunities. Three, highly polluted cities are more vulnerable to the health impacts of climate change, and cities with severe groundwater depletion will find it difficult to cope with increased rainfall variability. Policy and sustainability issues are discussed for these results.