99 resultados para volume phase grating
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.
Resumo:
We studied the microstructural evolution of multiple layers of elastically stiff films embedded in an elastically soft matrix using a phase field model. The coherent and planar film/matrix interfaces are rendered unstable by the elastic stresses due to a lattice parameter mismatch between the film and matrix phases, resulting in the break-up of the films into particles. With an increasing volume fraction of the stiff phase, the elastic interactions between neighbouring layers lead to: (i) interlayer correlations from an early stage; (ii) a longer wavelength for the maximally growing wave; and therefore (iii) a delayed break-LIP. Further, they promote a crossover in the mode of instability from a predominantly anti-symmetric (in phase) one to a symmetric (out of phase) one. We have computed a stability diagram for the most probable mode of break-up in terms of elastic modulus Mismatch and Volume fraction. We rationalize our results in terms of the initial driving force for destabilization, and corroborate our conclusions using simulations in elastically anisotropic systems.
Resumo:
A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.
Resumo:
The high temperature phase transformation of hydrazonium sulfate, N2H6SO4 has been studied using DSC. The enthalpy of phase transition is found to be 3.63 ± 0.1 kJ mole−1. The phase transition temperature is found to decrease with the increase of particle size. It appears that the strain energy and not surface energy, is responsible for the phase transformation. The molar volume of the salt increases during the transformation as found by the dilatometric experiment involving percentage of linear thermal expansion. On cooling, the transformation from the high temperature modification to orthorhombic form is incomplete and extends over a wide range of temperature.
Resumo:
1H NMR at high hydrostatic pressures and compressibility studies show that the protonic conductor (NH4)4Fe(CN)6·1.5H2O undergoes a phase transition around 0.45 GPa. The transition is characterized by a large hysteresis. From the NMR studies, an activation volume of 6% is obtained below the phase transition, indicating the dominance of Frenkel defects.
Resumo:
The presence of an inert immiscible organic phase in gas�liquid dispersions in stirred vessels influences the interfacial area in a more complex fashion than hitherto reported. As the organic phase fraction is increased, the interfacial area expressed on the basis of a unit volume of dispersion or aqueous phase, first increases, passes through a maximum and then decreases. This trend is observed irrespective of whether the area is determined by chemical means or by physical method. It is found that for low values of inert phase fraction, the average bubble size decreases whereas the gas holdup increases, resulting in increased interfacial area. The lower average bubble size is found to be due to partial prevention of coalescence as the bubbles size generated in the impeller region actually increases with the organic phase fraction. The actual values of interfacial areas depend on the nature of the organic phase. It is also found that the organic phase provides a parallel path for mass transfer to occur, when the solubility of gas in it is high.
Resumo:
Dichromated gelatin is thought to be a good substitute for photographic emulsions in some uses. The results of a systematic study of the effect of the pH of the developer on the diffraction efficiency of volume holographic gratings recorded in dye sensitized dichromated gelatin are presented.
Resumo:
This paper describes a simple technique for the fermentation of untreated or partly-treated leafy biomass in a digester of novel design without incurring the normal problems of feeding, floating and scum formation of feed, etc. The solid phase fermentation studied consists of a bed of biomass frequently sprinkled with an aqueous bacterial inoculum and recycling the leachate to conserve moisture and improve the bacterial dispersion in the bed. The decomposition of the leaf biomass and water hyacinth substrates used in this study was rapid, taking 45 and 30 days for the production of 250 and 235 l biogas per kg total solids (TS) respectively, for the above mentioned substrates at a daily sprinkled volume of 26 ml cm−2 of bed per day sprinkled at 12 h intervals. Very little volatile fatty acid (VFA) intermediates accumulated in the liquid sprinkled, suggesting acidogenesis to be rate-limiting in this process. From the pattern of VFA and gas produced it is concluded that most of the biogas produced is from the biomass bed, thus making the operation of a separate methanogenic reactor unnecessary.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
The out-diffusion of germanium from the core of a photosensitive fiber under elevated temperature is exploited to form a Fabry-Perot filter within a single fiber Bragg grating, by subjecting the diffused region to a single exposure using the standard phase-mask technique. A key aspect of our work is the measurement of the out-diffusion through energy dispersive X-ray analysis. Furthermore, we demonstrate the use of the above single-grating filter for discrimination and simultaneous measurement of strain and temperature. The proposed technique provides a significant advantage over other existing methods that require at least two gratings.
Resumo:
Analysis of gas-particle nozzle flow is carried out with attention to the effect of dust particles on the vibrational relaxation phenomena and consequent effects on the gain of a gasdynamic laser. The phase nonequilibrium between the gas mixture and the particles during the nozzle expansion process is taken into account simultaneously. The governing equations of the two-phase nozzle flow have been transformed into similar form, and general correlating parameters have been obtained. It is shown from the present analysis that the particles present in the mixture affect the optimum gain obtainable from a gasdynamic laser adversely, and the effect depends on the size and loading of the particles in the mixture.
Resumo:
A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.
Resumo:
The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.