13 resultados para visual terrain analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.
Resumo:
Surface models of biomolecules have become crucially important for the study and understanding of interaction between biomolecules and their environment. We argue for the need for a detailed understanding of biomolecular surfaces by describing several applications in computational and structural biology. We review methods used to model, represent, characterize, and visualize biomolecular surfaces focusing on the role that geometry and topology play in identifying features on the surface. These methods enable the development of efficient computational and visualization tools for studying the function of biomolecules.
Resumo:
We introduce a multifield comparison measure for scalar fields that helps in studying relations between them. The comparison measure is insensitive to noise in the scalar fields and to noise in their gradients. Further, it can be computed robustly and efficiently. Results from the visual analysis of various data sets from climate science and combustion applications demonstrate the effective use of the measure.
Resumo:
An engineering analysis of the design of two-wheel bullock carts has been carried out with the aid of a mathematical model. Non-dimensional expressions for the pull and the neck load have been developed. In the first instance, the cart is assumed to be cruising at constant velocity on a terrain with the effective coefficient of rolling friction varying over a wide range (0.001 to 0.5) and the gradient varying between +0.2 to −0.2. Subsequently, the effect of inertia force due to an acceleration parallel to the ground is studied. In the light of this analysis, two modifications to the design of the cart have been proposed and the relative merits of the current designs and the proposed designs are discussed.
Resumo:
Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
This paper analyzes the error exponents in Bayesian decentralized spectrum sensing, i.e., the detection of occupancy of the primary spectrum by a cognitive radio, with probability of error as the performance metric. At the individual sensors, the error exponents of a Central Limit Theorem (CLT) based detection scheme are analyzed. At the fusion center, a K-out-of-N rule is employed to arrive at the overall decision. It is shown that, in the presence of fading, for a fixed number of sensors, the error exponents with respect to the number of observations at both the individual sensors as well as at the fusion center are zero. This motivates the development of the error exponent with a certain probability as a novel metric that can be used to compare different detection schemes in the presence of fading. The metric is useful, for example, in answering the question of whether to sense for a pilot tone in a narrow band (and suffer Rayleigh fading) or to sense the entire wide-band signal (and suffer log-normal shadowing), in terms of the error exponent performance. The error exponents with a certain probability at both the individual sensors and at the fusion center are derived, with both Rayleigh as well as log-normal shadow fading. Numerical results are used to illustrate and provide a visual feel for the theoretical expressions obtained.
Resumo:
A wheeled mobile robot (WMR) can move on uneven terrains without slip if the wheels are allowed to tilt laterally. This paper deals with the analysis, design and experimentations with a WMR where the wheels can tilt laterally. The wheels of such a WMR must be equipped with two degrees of freedom suspension mechanism. A prototype three-wheeled mobile robot is fabricated with a two degree-of-freedom suspension mechanism. Simulations show that the three-wheeled mobile robot can traverse uneven terrains with very little slip and experiments with the prototype on a representative uneven terrain confirm that the slip is significantly reduced.
Resumo:
Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
The standard procedure of groundwater resource estimation in India till date is based on the specific yield parameters of each rock type (lithology) derived through pumping test analysis. Using the change in groundwater level, specific yield, and area of influence, groundwater storage change could be estimated. However, terrain conditions in the form of geomorphological variations have an important bearing on the net groundwater recharge. In this study, an attempt was made to use both lithology and geomorphology as input variables to estimate the recharge from different sources in each lithology unit influenced by the geomorphic conditions (lith-geom), season wise separately. The study provided a methodological approach for an evaluation of groundwater in a semi-arid hard rock terrain in Tirunelveli, Tamil Nadu, India. While characterizing the gneissic rock, it was found that the geomorphologic variations in the gneissic rock due to weathering and deposition behaved differently with respect to aquifer recharge. The three different geomorphic units identified in gneissic rock (pediplain shallow weathered (PPS), pediplain moderate weathered (PPM), and buried pediplain moderate (BPM)) showed a significant variation in recharge conditions among themselves. It was found from the study that Peninsular gneiss gives a net recharge value of 0.13 m/year/unit area when considered as a single unit w.r.t. lithology, whereas the same area considered with lith-geom classes gives recharge values between 0.1 and 0.41 m/year presenting a different assessment. It is also found from this study that the stage of development (SOD) for each lith-geom unit in Peninsular gneiss varies from 168 to 230 %, whereas the SOD is 223 % for the lithology as a single unit.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.