5 resultados para vascular graft
em Indian Institute of Science - Bangalore - Índia
Resumo:
Gelatin graft copolymers of different compositions were tested for microbial susceptibility in a synthetic medium with pure cultures of Pseudomonas aeruginosa, Bacillus subtilis, and Serratia marcescens. The percent weight losses were recorded over 6 weeks of incubation period in nitrogen-free and nitrogen-rich media. The relationship between [log(rate)] during the first week of the test period and composition of the grafted samples showed a linear behavior. There was no difference in the aggressivity of these bacterial strains. Nitrogen analysis data and pH measurements of the media seem to reinforce our earlier observations. Soil burial tests also indicate degradation of polymer samples under natural weathering conditions. This article also summarizes the salient features of our series of investigations.
Resumo:
Gelatin-g-poly(methyl acrylate) and gelatin-g-poly(acrylonitrile) copolymers were prepared in an aqueous medium using K2S2O8 initiator. A plausible mechanism has been put forward for the observed grafting behavior of monomers. Gelatin-g-PAN showed a greater resistance to mixed bacterial inolucum compared to gelatin-g-PMA samples. The rate of degradation decreased with the increase in grafting efficiency. A parallel set of experiments carried out by employing the samples as the only source of both carbon and nitrogen showed a marginal but definite increase in the utilization of the polymer. The nitrogen analysis also showed the utilization of the polymer. Scanning electron micographs of the polymer films do show extensive pitting after microbiological testing.
Resumo:
Graft copolymerization of poly(aniline) (PANI) onto poly(propylene) (PP) fibre was carried out in aqueous acidic medium under nitrogen atmosphere by using peroxomonosulphate (PMS) as a lone initiator. The non-conducting fibre was now made into a conducting one through the chemical grafting of PANI units onto the PP fibre backbone. The content of PANI in the backbone was found to vary while varying the [ANI], [PMS] and amount of PP fibre. Various graft parameters were evaluated. The chemical grafting of PANI onto PP fibre was confirmed by conductivity measurements.
Resumo:
The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.