159 resultados para uneven lighting image correction

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The document images that are fed into an Optical Character Recognition system, might be skewed. This could be due to improper feeding of the document into the scanner or may be due to a faulty scanner. In this paper, we propose a skew detection and correction method for document images. We make use of the inherent randomness in the Horizontal Projection profiles of a text block image, as the skew of the image varies. The proposed algorithm has proved to be very robust and time efficient. The entire process takes less than a second on a 2.4 GHz Pentium IV PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of folded solution conformations in the peptides Boc-Ala-(Aib-Ala)2-OMe, Boc-Val-(Aib-Val) 2-OMe, Boc-Ala-(Aib-Ala)3-OMe and Boc-Val-(Aib-Val)3-OMe has been established by 270MHz 1H NMR. Intramolecularly H-bonded NH groups have been identified using temperature and solvent dependence of NH chemical shifts and paramagnetic radical induced broadening of NH resonances. Both pentapeptides adopt 310 helical conformations possessing 3 intramolecular H-bonds in CDCl3 and (CD3)2SO. The heptapeptides favour helical structures with 5 H-bonds in CDCl3. In (CD3)2SO only 4 H-bonds are readily detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral or transaxial truncation of cone-beam data can occur either due to the field of view limitation of the scanning apparatus or iregion-of-interest tomography. In this paper, we Suggest two new methods to handle lateral truncation in helical scan CT. It is seen that reconstruction with laterally truncated projection data, assuming it to be complete, gives severe artifacts which even penetrates into the field of view. A row-by-row data completion approach using linear prediction is introduced for helical scan truncated data. An extension of this technique known as windowed linear prediction approach is introduced. Efficacy of the two techniques are shown using simulation with standard phantoms. A quantitative image quality measure of the resulting reconstructed images are used to evaluate the performance of the proposed methods against an extension of a standard existing technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method, designated the holographic spectrum reconstruction (HSR) method, is proposed for achieving simultaneous display of the spectrum and image of an object in a single plane. A study of the scaling behaviour of both the spectrum and the image has been carried out and based on this study, it is demonstrated that a lensless coherent optical processor can be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Color displays used in image processing systems consist of a refresh memory buffer storing digital image data which are converted into analog signals to display an image by driving the primary color channels (red, green, and blue) of a color television monitor. The color cathode ray tube (CRT) of the monitor is unable to reproduce colors exactly due to phosphor limitations, exponential luminance response of the tube to the applied signal, and limitations imposed by the digital-to-analog conversion. In this paper we describe some computer simulation studies (using the U*V*W* color space) carried out to measure these reproduction errors. Further, a procedure to correct for color reproduction error due to the exponential luminance response (gamma) of the picture tube is proposed, using a video-lookup-table and a higher resolution digital-to-analog converter. It is found, on the basis of computer simulation studies, that the proposed gamma correction scheme is effective and robust with respect to variations in the assumed value of the gamma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the effect of fluctuations of the random potential in directions transverse to the current flow in a modified Migdal-Kadanoff approach to probabilistic scaling of conductance with size L, in d-dimensional metallic systems. The conductance cumulants are finite and vary as Ld−1−n for n greater-or-equal, slanted 2 i.e. conductance fluctuations are constant for d = 3. The mean conductance has a non-classical correction with Image Full-size image (<1K) for d greater-or-equal, slanted 2. The form of the higher cumulants is strongly influenced by the transverse potential fluctuations and may be compared with the results of perturbative diagrammatic approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsomes (105,000xg sediment) prepared from induced cells of Image was found to hydroxylate progesterone to 11a-hydroxyprogesterone (11a-OHP) in high yields (85-90% in 30 min.) in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.7. However, for the isolation of active microsomes grinding of the mycelium should be carried out at pH 8.3. Metyrapone, carbon monoxide, SKF-525A, p-CMB and N-methyl maleimide inhibited the hydroxylase activity indicating the involvement of cytochrome P-450 system. The inhibition of the hydroxylase by cytochrome Image and the presence of high levels of NADPH-cytochrome Image reductase in induced microsomes suggest that the reductase could be one of the components in the hydroxylase system.