50 resultados para two-photon polymerization
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have studied the nonlinear optical properties of nanolayered Se/As2S3 film with a modulation period of 10 nm and a total thickness of 1.15 mu m at two [1064 nm (8 ns) and 800 nm (20 ps)] wavelengths using the standard Z-scan technique. Three-photon absorption was observed at off-resonant excitation and saturation of two-photon absorption at quasiresonant excitation. The observation of the saturation of two-photon absorption is because the pulse duration is shorter than the thermalization time of the photocreated carriers in their bands and three-photon absorption is due to high excitation irradiance. (c) 2007 American Institute of Physics.
Resumo:
We introduce the inverse annihilation and creation operators a-1 and a(dagger-1) by their actions on the number states. We show that the squeezed vacuum exp(1/2xia(dagger2)]\0] and squeezed first number state exp[1.2xia(dagger2)]\n = 1] are respectively the eigenstates of the operators (a(dagger-1)a) and (aa(dagger-1)) with the eigenvalue xi.
Resumo:
We introduce the inverse of the Hermitian operator (acircacirc†) and express the Boson inverse operators acirc-1 and acirc†-1 in terms of the operators acirc, acirc† and (acircacirc†)-1. We show that these Boson inverse operators may be realized by Susskind-Glogower phase operators. In this way, we find a new two-photon annihilation operator and denote it as acirc2(acircacirc†)-1. We show that the eigenstates of this operator have interesting non-classical properties. We find that the eigenstates of the operators (acircacirc†)-1 acirc2, acirc(acircacirc†)-1 acirc and acirc2(acircacirc†)-1 have many similar properties and thus they constitute a family of two-photon annihilation operators.
Resumo:
Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).
Resumo:
We report the nonlinear optical absorption studies in two differently sized water-soluble cadmium telluride quantum dot (QD) samples, exhibiting first excitonic absorption peaks at 493 nm and 551 nm, respectively. An optical limiting behavior is observed for near-resonant excitation at 532 nm using nanosecond laser pulses, originating from the effective two-photon absorption (TPA) mechanism. The effective TPA coefficient (beta(eff)) is measured to be in the range of 10(-12) m/W. This is one order of magnitude higher than the TPA coefficient (beta) reported for off-resonant excitation. At this excitation wavelength, the smaller QD shows a relatively weaker photoluminescence and stronger nonlinear absorption. (C) 2012 American Institute of Physics. [doi:10.1063/1.3687695]
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
Ferroelectric c-oriented Bi2VO5.5 (BVO) thin films (thickness approximate to 300 nm) were fabricated by pulsed laser deposition on corning glass substrates. Nonlinear refractive index (n(2)) and two photon absorption coefficient (beta) were measured by Z-scan technique at 532 nm wavelength delivering pulses with 10 ns duration. Relatively large values of n(2) = 2.05 +/- 0.2 x 10(-10) cm(2)/W and beta = 9.36 +/- 0.3 cm/MW were obtained for BVO thin films. Origin of the large optical nonlinearities in BVO thin films was discussed based on bond-orbital theory of transition metal oxides. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, β, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high β values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal−porphyrin core, resulting in a large β value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, β0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree−Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.
Resumo:
Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4 pi geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology. (C) 2013 AIP Publishing LLC.
Resumo:
We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.
Resumo:
Microwave treated water soluble and amide functionalized single walled carbon nanotubes have been investigated using femtosecond degenerate pump-probe and nonlinear transmission experiments. The time resolved differential transmission using 75 femtosecond pulse with the central wavelength of 790 nm shows a bi-exponential ultrafast photo-bleaching with time constants of 160 fs (130 fs) and 920 fs (300 fs) for water soluble (amide functionalized) nanotubes. Open and closed aperture z-scans show saturation absorption and positive (negative) nonlinear refraction for water soluble (amide functionalized) nanotubes. Two photon absorption coefficient, beta(0) similar to 250 cm/GW (650 cm/GW) and nonlinear index, gamma similar to 15 cm(2)/pW (-30 cm(2)/pW) are obtained from the theoretical fit in the saturation limit to the data for two types of nanotubes.
Resumo:
We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser–Parr–Pople Hamiltonian to model the interacting pi electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics