57 resultados para tropical semideciduous forest
em Indian Institute of Science - Bangalore - Índia
Resumo:
A long term study on the phenology of tree species of tropical dry deciduous forest ecosystem of Bandipur, South India has revealed patterns of strong seasonality with respect to leaf and fruit initiation as well as their abscission. The distribution of the duration of the various phenological events was observed to be skewed and there was little interannual variation in events such as flowering and fruiting. This suggests that there are, perhaps, no mast flowering or fruiting species present in the deciduous forests. The phenological changes appear to influence the food, feeding, movement patterns and sociality of the major mammals of this dry deciduous ecosystem.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988-2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 +/- 4.6% (range = 1.5-17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1-5 cm dbh, elephant-herbivory in stems 5-10 cm dbh, and other natural causes in stems > 10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2-3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.
Resumo:
Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.
Resumo:
1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.
Resumo:
As part of an international network of large plots to study tropical vegetation dynamics on a long-term basis, a 50-hectare permanent plot was set up during 1988-89 in the deciduous forests of Mudumalai, southern India. Within this plot 25,929 living woody plants (71 species) above 1 cm DBH (diameter at breast height) were identified, measured, tagged and mapped. Species abundances corresponded to the characteristic log-normal distribution. The four most abundant species (Kydia calycina, Lagerstroemia microcarpa, Terminalia crenulata and Helicteres isora) constituted nearly 56% of total stems, while seven species were represented by only one individual each in the plot. Variance/mean ratios of density showed most species to have clumped distributions. The population declined overall by 14% during the first two years, largely due to elephant and fire-mediated damage to Kydia calycina and Helicteres isora. In this article we discuss the need for large plots to study vegetation dynamics.
Resumo:
Phenological observations on tree species in tropical moist forest of Uttara Kannada district (13ℴ55′ to 15ℴ31′ N lat; 74ℴ9′ to 75ℴ10′ E long) during the years 1983–1985 revealed that there exists a strong seasonality for leaf flush, leaf drop and reproduction. Young leaves were produced in the pre-monsoon dry period with a peak in February, followed by the expansion of leaves which was completed in March. Abscission of leaves occurred in the post-monsoon winter period with a peak in December. There were two peaks for flowering (December and March), while fruit ripening had a single peak in May–June, preceding the monsoon rainfall. The duration of maturation of leaves was the shortest, while that of full ripening of fruits was the longest. Mature flowers of evergreen species lasted longer than those of deciduous species; in contrast the phenophase of ripe fruits of deciduous species was longer than that of evergreen species.
Resumo:
1. Habitat selection is a universal aspect of animal ecology that has important fitness consequences and may drive patterns of spatial organisation in ecological communities. 2. Measurements of habitat selection have mostly been carried out on single species and at the landscape level. Quantitative studies examining microhabitat selection at the community level are scarce, especially in insects. 3. In this study, microhabitat selection in a natural assemblage of cricket species was examined for the first time using resource selection functions (RSF), an approach more commonly applied in studies of macrohabitat selection. 4. The availability and differential use of six microhabitats by 13 species of crickets inhabiting a tropical evergreen forest in southern India was examined. The six available microhabitats included leaf litter-covered ground, tree trunks, dead logs, brambles, understorey and canopy foliage. The area offered by the six microhabitats was estimated using standard methods of forest structure measurement. Of the six microhabitats, the understorey and canopy accounted for approximately 70% of the total available area. 5. The use of different microhabitats by the 13 species was investigated using acoustic sampling of crickets to locate calling individuals. Using RSF, it was found that of 13 cricket species examined, 10 showed 100% selection for a specific microhabitat. Of these, two species showed fairly high selection for brambles and dead logs, which were rare microhabitats, highlighting the importance of preserving all components of forest structure.
Resumo:
Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.
Resumo:
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.
Resumo:
In both single- and mixed-species social groups, certain participants are known to play important roles in providing benefits. Identifying these participants is critical for understanding group dynamics, but is often difficult with large roving social groups in the wild. Here, we develop a new approach to characterize roles in social groups and apply it to mixed-species bird flocks (flocks hereafter) in an Indian tropical evergreen forest. Two types of species, namely intraspecifically gregarious and sallying species, are thought to play important roles in flocks because studies have shown they attract other flock participants. However, it is unclear why these types are attractive and whether they are essential for flock formation. We address these questions by focusing on the composition of the subset of flocks containing only two species each. In two-species flocks, it is reasonable to assume that at least one species obtains some kind of benefit. Therefore, only those species combinations that result in benefit to at least one species should occur as two-species flocks. Using data from 540 flocks overall, of which 158 were two-species flocks, we find that intraspecifically gregarious species are disproportionately represented in two-species flocks and always lead flocks when present, and that flocks containing them are joined significantly more by other species. Our results suggest that intraspecifically gregarious species are likely to be the primary benefit providers in flocks and are important for tropical flock formation. Our study also provides a new approach to understanding importance in other mixed-species and single-species social groups.
Resumo:
Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.
Resumo:
As populations of the world's largest animal species decline, it is unclear how ecosystems will react to their local extirpation. Due to the unique ecological characteristics of megaherbivores such as elephants, seed dispersal is one ecosystem process that may be affected as populations of large animals are decimated. In typically disturbed South Asian ecosystems, domestic bovids (cattle, Bos primigenius, and buffalo, Bubalus bubalis) may often be the species most available to replace Asian elephants (Elephas maximus) as endozoochorous dispersers of large-fruited mammal-dispersed species. We use feeding trials, germination trials, and movement data from the tropical moist forests of Buxa Tiger Reserve (India) to examine whether domestic bovids are viable replacements for elephants in the dispersal of three largefruited species: Dillenia indica, Artocarpus chaplasha, and Careya arborea. We find that (1) once consumed, seeds are between 2.5 (C. arborea) and 26.5 (D. indica) times more likely to pass undigested into elephant dung than domestic bovid dung; and (2) seeds from elephant dung germinated as well as or better than seeds taken from bovid dung for all plant species, with D. indica seeds from elephant dung 1.5 times more likely to germinate. Furthermore, since wild elephants have less constrained movements than even free-roaming domestic bovids, we calculate that maximum dispersal by elephants is between 9.5 and 11.2 times farther than that of domestic bovids, with about 20% of elephant-dispersed seeds being moved farther than the maximum distance seeds are moved by bovids. Our findings suggest that, while bovids are able to disperse substantial numbers of seeds over moderate distances for two of the three study species, domestic bovids will be unable to routinely emulate the reliable, long-distance dispersal of seeds executed by elephants in this tropical moist forest. Thus while domestic bovids can attenuate the effects of losing elephants as dispersers, they may not be able to prevent the decline of various mammal-dispersed fruiting species in the face of overhunting, habitat fragmentation, and climate change.
Resumo:
Large animals are disproportionately likely to go extinct, and the effects of this on ecosystem processes are unclear. Megaherbivores (weighing over 1000kg) are thought to be particularly effective seed dispersers, yet only a few plant species solely or predominantly adapted for dispersal by megaherbivores have been identified. The reasons for this paradox may be elucidated by examining the ecology of so-called megafaunal fruiting species in Asia, where large-fruited species have been only sparsely researched. We conducted focal tree watches, camera trapping, fruit ageing trials, dung seed counts and germination trials to understand the ecology of Dillenia indica, a large-fruited species thought to be elephant-dispersed, in a tropical moist forest (Buxa Tiger Reserve, India). We find that the initial hardness of the fruit of D.indica ensures that its small (6mm) seeds will primarily be consumed and dispersed by elephants and perhaps other megaherbivores. Elephants removed 63.3% of camera trap-monitored fruits taken by frugivores. If the fruit of D.indica is not removed by a large animal, the seeds of D.indica become available to successively smaller frugivores as its fruits soften. Seeds from both hard and soft fruits are able to germinate, meaning these smaller frugivores may provide a mechanism for dispersal without megaherbivores.Synthesis. Dillenia indica's strategy for dispersal allows it to realize the benefits of dispersal by megaherbivores without becoming fully reliant on these less abundant species. This risk-spreading dispersal behaviour suggests D.indica will be able to persist even if its megafaunal disperser becomes extinct.