65 resultados para tropical deciduous forest

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long term study on the phenology of tree species of tropical dry deciduous forest ecosystem of Bandipur, South India has revealed patterns of strong seasonality with respect to leaf and fruit initiation as well as their abscission. The distribution of the duration of the various phenological events was observed to be skewed and there was little interannual variation in events such as flowering and fruiting. This suggests that there are, perhaps, no mast flowering or fruiting species present in the deciduous forests. The phenological changes appear to influence the food, feeding, movement patterns and sociality of the major mammals of this dry deciduous ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of an international network of large plots to study tropical vegetation dynamics on a long-term basis, a 50-hectare permanent plot was set up during 1988-89 in the deciduous forests of Mudumalai, southern India. Within this plot 25,929 living woody plants (71 species) above 1 cm DBH (diameter at breast height) were identified, measured, tagged and mapped. Species abundances corresponded to the characteristic log-normal distribution. The four most abundant species (Kydia calycina, Lagerstroemia microcarpa, Terminalia crenulata and Helicteres isora) constituted nearly 56% of total stems, while seven species were represented by only one individual each in the plot. Variance/mean ratios of density showed most species to have clumped distributions. The population declined overall by 14% during the first two years, largely due to elephant and fire-mediated damage to Kydia calycina and Helicteres isora. In this article we discuss the need for large plots to study vegetation dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A permanent 2 ha (200 m x 100 m) plot was established for long-term monitoring of plant diversity and dynamics in a tropical dry deciduous forest of Bhadra Wildlife Sanctuary, Karnataka, southern India. Enumeration of all woody plants >= 1 cm DBH (diameter at breast height) yielded a total of 1766 individuals that belonged to 46 species, 37 genera and 24 families. Combretaceae was the most abundant family in the forest with a family importance value of 68.3. Plant density varied from 20 - 90 individuals with an average 35 individuals/quadrat (20 m x 20 m). Randia dumetorum, with 466 individuals (representing 26.7 % of the total density 2 ha(-1)) with species importance value of 36.25, was the dominant species in the plot. The total basal area of the plot was 18.09 m(2) ha(-1) with a mean of 0.72 m(2) quadrat(-1). The highest basal area of the plot was contributed by Combretaceae (12.93 m(2) 2 ha(-1)) at family level and Terminalia tomentosa (5.58 m(2) 2 ha(-1)) at species level. The lowest diameter class (1-10 cm) had the highest density (1054 individuals 2 ha(-1)), but basal area was highest in the 80 - 90 cm diameter class (5.03m(2) 2 ha(-1)). Most of the species exhibited random or aggregated distribution over the plot. This study provides a baseline information on the dry forests of Bhadra Wildlife Sanctuary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forested areas play a dominant role in the global hydrological cycle. Evapotranspiration is a dominant component most of the time catching up with the rainfall. Though there are sophisticated methods which are available for its estimation, a simple reliable tool is needed so that a good budgeting could be made. Studies have established that evapotranspiration in forested areas is much higher than in agricultural areas. Latitude, type of forests, climate and geological characteristics also add to the complexity of its estimation. Few studies have compared different methods of evapotranspiration on forested watersheds in semi arid tropical forests. In this paper a comparative study of different methods of estimation of evapotranspiration is made with reference to the actual measurements made using all parameter climatological station data of a small deciduous forested watershed of Mulehole (area of 4.5 km2 ), South India. Potential evapotranspiration (ETo) was calculated using ten physically based and empirical methods. Actual evapotranspiration (AET) has been calculated through computation of water balance through SWAT model. The Penman-Montieth method has been used as a benchmark to compare the estimates arrived at using various methods. The AET calculated shows good agreement with the curve for evapotranspiration for forests worldwide. Error estimates have been made with respect to Penman-Montieth method. This study could give an idea of the errors involved whenever methods with limited data are used and also show the use indirect methods in estimation of Evapotranspiration which is more suitable for regional scale studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988-2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 +/- 4.6% (range = 1.5-17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1-5 cm dbh, elephant-herbivory in stems 5-10 cm dbh, and other natural causes in stems > 10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2-3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenological observations on tree species in tropical moist forest of Uttara Kannada district (13ℴ55′ to 15ℴ31′ N lat; 74ℴ9′ to 75ℴ10′ E long) during the years 1983–1985 revealed that there exists a strong seasonality for leaf flush, leaf drop and reproduction. Young leaves were produced in the pre-monsoon dry period with a peak in February, followed by the expansion of leaves which was completed in March. Abscission of leaves occurred in the post-monsoon winter period with a peak in December. There were two peaks for flowering (December and March), while fruit ripening had a single peak in May–June, preceding the monsoon rainfall. The duration of maturation of leaves was the shortest, while that of full ripening of fruits was the longest. Mature flowers of evergreen species lasted longer than those of deciduous species; in contrast the phenophase of ripe fruits of deciduous species was longer than that of evergreen species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Habitat selection is a universal aspect of animal ecology that has important fitness consequences and may drive patterns of spatial organisation in ecological communities. 2. Measurements of habitat selection have mostly been carried out on single species and at the landscape level. Quantitative studies examining microhabitat selection at the community level are scarce, especially in insects. 3. In this study, microhabitat selection in a natural assemblage of cricket species was examined for the first time using resource selection functions (RSF), an approach more commonly applied in studies of macrohabitat selection. 4. The availability and differential use of six microhabitats by 13 species of crickets inhabiting a tropical evergreen forest in southern India was examined. The six available microhabitats included leaf litter-covered ground, tree trunks, dead logs, brambles, understorey and canopy foliage. The area offered by the six microhabitats was estimated using standard methods of forest structure measurement. Of the six microhabitats, the understorey and canopy accounted for approximately 70% of the total available area. 5. The use of different microhabitats by the 13 species was investigated using acoustic sampling of crickets to locate calling individuals. Using RSF, it was found that of 13 cricket species examined, 10 showed 100% selection for a specific microhabitat. Of these, two species showed fairly high selection for brambles and dead logs, which were rare microhabitats, highlighting the importance of preserving all components of forest structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The movement and habitat utilization patterns were studied in an Asian elephant population during 1981-83 within a 1130 km2 area in southern India (110 30' N to 120 0' N and 760 50' E to 770 15' E). The study area encompasses a diversity of vegetation types from dry thorn forest (250-400 m) through deciduous forest (400-1400 m) to stunted evergreen shola forest and grassland (1400-1800 m). Home range sizes of some identified elephants were between 105 and 320 km2. Based on the dry season distribution, five different elephant clans, each consisting of between 50 and 200 individuals and having overlapping home ranges, could be defined within the study area. Seaso- nal habitat preferences were related to the availability of water and the palatability of food plants. During the dry months (January-April) elephants congregated at high densities of up to five individuals kM-2 in river valleys where browse plants had a much higher protein content than the coarse tall grasses on hill slopes. With the onset of rains of the first wet season (May- August) they dispersed over a wider area at lower densities, largely into the tall grass forests, to feed on the fresh grasses, which then had a high protein value. During the second wet season (September-December), when the tall grasses became fibrous, they moved into lower elevation short grass open forests. The normal movement pattern could be upset during years of adverse environmental con- ditions. However, the movement pattern of elephants in this region has not basically changed for over a century, as inferred from descriptions recorded during the nineteenth century.