58 resultados para titania silice fotocatalisi materiali naostrutturati eterocoagulazione

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed high-temperature compression creep experiments on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ doped with 4.8 wt% TiO2 revealed that both materials exhibit a similar transition in stress exponents from n similar to 1 to n similar to 2 with a decrease in stress. The stress exponent of 1 and the inverse grain size dependence p of similar to 3 are consistent with the Coble diffusion creep at high stresses; the increase in stress exponent at low stresses is attributed to an interface-controlled diffusion creep process. Measurements revealed that grain-boundary sliding contributes to >similar to 50% of the total strain in both regions with n similar to 1 and n similar to 2, indicating the operation of the same fundamental deformation process in both regions. The creep data indicate that doping with TiO2 leads to an increase in the grain-boundary diffusion coefficients. The increase observed in the dihedral angle with doping is also consistent with the increase in grain boundary diffusion coefficient and the reported enhanced ductility in such materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here.Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH.Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXAFS studies of Ni/Nb20, and Ni/Ti02 catalysts reduced at 773 K show evidence for the presence of a short Ni-Nb (Ti) and a long Ni-Nb (Ti) bond. The results provide evidence for considerable structural reorganization of the support in the vicinity of the Ni particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanyl hydrazine carboxylate dihydrate, TiO(N2H3COO)2.2H2O, zirconyl hydrazine carboxylate dihydrate, ZrO(N2H3COO)2.2H2O and their solid solution, ZrTiO2(N2H3COO)4.4H2O have been prepared for the first time and investigated as precursors to fine particle TiO2, ZrO2 and ZrTiO4 respectively. Titania(anatase) formed has a very high surface area of 110 m2/g and zirconium titanate showed very low dielectric loss (4 x 10(-4)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of titanium dioxide have been deposited using ion assisted deposition with oxygen ions in the energy range 100�500 eV and current densities up to 100 ?A/cm2. It has been observed that the refractive index of the films increases up to 300 eV and the extinction coefficient increased only nominally up to 300 eV. Optical band gap calculations have shown a strong dependence of the gap on the energy of incident ions. Beyond a critical energy and current density of the ions the refractive index and extinction coefficient of the films start deteriorating. It has also been found that beyond the critical values the optical band gap value decreases. The maximum refractive index obtained was 2.49 at an energy of 300 eV and 50 ?A/cm2 current density. Post?deposition annealing of the films at 500?°C resulted in a slight increase in refractive index without affecting the extinction coefficient. X?ray diffraction studies revealed a monophasic anatase structure in these films. ?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of optical constants, structure and composition of titania thin films on the process parameters has been investigated. Films were deposited using both reactive electron beam evaporation and ion Assisted Deposition(IAD). If has been observed that the refractive index of IAD films is higher than that for the reactively deposited films, without much difference in the extinction coefficient. Electron paramagnetic resonance has been used to estimate qualitatively the presence of non-stoichiometry in the films. It has been found that these spectra correlate very well the optical behaviour of the films. X-ray diffraction studies revealed that the neutral oxygen deposited films were stress free, while the IAD films showed tensile stress. The lattice parameters showed anisotropic change with ion beam parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.