14 resultados para the more-than-human
em Indian Institute of Science - Bangalore - Índia
Resumo:
Brachysaura is a monotypic genus of agamid lizard found in the Indian subcontinent; the identity and systematic position of B. minor has been long debated, and it has at times been subsumed into Agama, Charasia and Laudakia, with some authors suggesting affinities to Calotes. We constructed nuclear and mitochondrial phylogenetic trees including Brachysaura and allied agamid genera to resolve its phylogenetic position. We also compared osteology and external morphology with the genera Agama, Calotes and Laudakia. Hemipenial morphology was compared with Calotes and some other agamids from South Asia. Both nuclear and mitochondrial phylogenies demonstrate that Brachysaura is nested within the widespread South and Southeast Asian genus Calotes, with which it also shares certain external morphological, osteological and hemipenial characters. Adaptations to ground dwelling in Brachysaura minor has resulted in unique modifications to its body plan, which is likely why generic allocation has been long confused. This study also highlights the need for an integrated systematic approach to resolve taxonomic ambiguity in Asian agamids.
Resumo:
In the yeast, mobilization of triacylglycerols (TAG) is facilitated by TGL3, TGL4 and TGL5 gene products. Interestingly, experiments using [32P] orthophosphate as a precursor for complex glycerophospholipids revealed that tgl mutants had a lower steady-state level of these membrane lipids. To understand a possible link between TAG lipolysis and phospholipid metabolism, we performed overexpression studies with Tgl3p and Tgl5p which clearly demonstrated that these two enzymes enhanced the level of phospholipids. Domains and motifs search analyses indicated that yeast TAG hydrolases posses a GXSXG lipase motif but also a HX4D acyltransferase motif. Purified Tgl3p and Tgl5p did not only exhibit TAG lipase activity but also catalyzed acyl-CoA dependent acylation of lyso-phosphatidylethanolamine and lyso-phosphatidic acid (LPA), respectively. Search for lipase/hydrolase homologues in the Arabidopsis thaliana genome led to the identification of At4g24160 which possess three motifs that are conserved across the plant species such as GXSXG motif, a HX4D motif and a probable lipid binding motif V(X)3HGF. Characterization of At4g24160 expressed in bacteria revealed that the presence of an acyl-CoA dependent LPA acyltransferase activity. In addition, the purified recombinant At4g24160 protein hydrolyzed both TAG and phosphatidylcholine. We hypothesize that the plant enzyme may be involved in membrane repair. In summary, our results indicate that these TAG lipases play a dual role and thereby contribute to both anabolic and catabolic processes in yeast and plants.
Resumo:
Adult male bonnet monkeys exhibit nychthemeral rhythms in testosterone (T) secretion but the precise role of this heightened level of T secretion in regulating spermatogenesis is not known. Intranasal administration of microdoses (500 mu g or 250 mu g/day) of Norethisterone (IN-NET) to adult monkeys (n = 6) at 1600 h each day selectively and completely suppressed the nocturnal surge levels of serum T. Concomitant with this was a significant reduction (P<0.01) in serum LH but not FSH levels. DNA flow cytometric analysis of testicular biopsy tissue showed by week 10 of IN-NET treatment an arrest in meiotic transformation of primary spermatocytes (4C) to round/elongate (1C/HC) spermatids and by week 20 there was a complete absence of 4C, 1C and HC cells (with a relative accumulation in 2C cells). The accumulated meiotic (4C) cells at week 10 showed an increase (>80%, P<0.01) in coefficient of variation and a decrease in intensity of DNA-bound ethidium bromide fluorescence, parameters characteristic of degenerating 'apoptotic' subpopulation of germ cells. While two monkeys exhibited acute oligozoospermia 4 became azoospermic by 20 weeks of IN-NET treatment. A complete, qualitative reversal in the regressive changes in spermatogenesis and near-normal sperm output were apparent at the end of a 20-week recovery phase. These data demonstrate that prolonged, selective suppression of nocturnal surge levels of serum T secretion exerts a primary effect on meiosis in spermatogenesis leading to oligo/azoospermic status in adult bonnet monkeys.
Resumo:
This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for siRNA therapeutics. Advances in protein design methodology and screening are described, with a focus on their application to the design of antibody based therapeutics. Future advances in this area relevant to vaccine design are also mentioned.
Resumo:
Time course of release of immunoreactive hCG to a placental incubation in the medium revealed a steady increase over a period of 4 hours. However, levels in the tissue, showed an increase at 10' and 60' after an initial decrease. Studies using A23187 which stimulated hCG secretion also revealed a net increase in the quantity of hCG in the tissue. These results sugest that the secretion of hCG acts as a stimulus for fresh synthesis of hCG.
Resumo:
Guanylate cyclase activating protein-1 (GCAP1) is required for activation of retinal guanylate cyclase-1 (RetGC1), which is essential for recovery of photoreceptor cells to the dark state. In this paper, experimentally derived observations are reported that help in explaining why a proline→leucine mutation at position 50 of human GCAP1 results in cone–rod dystrophy in a family carrying this mutation. The primary amino acid sequence of wild-type GCAP1 was mutated using site-directed mutagenesis to give a leucine at position 50. In addition, serine replaced a glutamic acid residue at position 6 to promote N‐terminal myristoylation, yielding the construct GCAP1 E6S/P50L. The enzyme was over-expressed in Escherichia coli cells, isolated and purified before being used in assays with RetGC1, characterized by circular dichroism (CD) spectroscopy, and investigated for protease resistance and thermal stability. Assays of cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphosphate by RetGC1 in the presence of E6S/P50L showed that E6S/P50L could activate RetGC1 and displayed similar calcium sensitivity to wild-type GCAP1. In addition, E6S/P50L and wild-type GCAP1 possess similar CD spectra. However, there was a marked increase in the susceptibility to protease degradation and also a reduction in the thermal stability of E6S/P50L as observed by both the cGMP assay and CD spectroscopy. It is therefore suggested that although GCAP1 E6S/P50L has a similar activity and calcium dependency profile to the wild-type GCAP1, its lower stability could reduce its cellular concentration, which would in turn alter [Ca2+] and result in death of cells.
Resumo:
P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Cell-permeable small molecules that enhance the stability of the G-quadruplex (G4) DNA structures are currently among the most intensively pursued ligands for inhibition of the telomerase activity. Herein we report the design and syntheses of four novel benzimidazole carbazole conjugates and demonstrate their high binding affinity to G4 DNA. Si nuclease assay confirmed the ligand mediated G-quadruplex DNA protection. Additional evidence from Telomeric Repeat Amplification Protocol (TRAP-LIG) assay demonstrated efficient telomerase inhibition activity by the ligands. Two of the ligands showed IC50 values in the sub-micromolar range in the TRAP-LIG assay, which are the best among the benzimidazole derivatives reported so far. The ligands also exhibited cancer cell selective nuclear internalization, nuclear condensation, fragmentation, and eventually antiproliferative activity in long-term cell viability assays. Annexin V-FITC/PI staining assays confirm that the cell death induced by the ligands follows an apoptotic pathway. An insight into the mode of ligand binding was obtained from the molecular dynamics simulations.
Resumo:
for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Resumo:
Climate change is expected to influence extreme precipitation which in turn might affect risks of pluvial flooding. Recent studies on extreme rainfall over India vary in their definition of extremes, scales of analyses and conclusions about nature of changes in such extremes. Fingerprint-based detection and attribution (D&A) offer a formal way of investigating the presence of anthropogenic signals in hydroclimatic observations. There have been recent efforts to quantify human effects in the components of the hydrologic cycle at large scales, including precipitation extremes. This study conducts a D&A analysis on precipitation extremes over India, considering both univariate and multivariate fingerprints, using a standardized probability-based index (SPI) from annual maximum one-day (RX1D) and five-day accumulated (RX5D) rainfall. The pattern-correlation based fingerprint method is used for the D&A analysis. Transformation of annual extreme values to SPI and subsequent interpolation to coarser grids are carried out to facilitate comparison between observations and model simulations. Our results show that in spite of employing these methods to address scale and physical processes mismatch between observed and model simulated extremes, attributing changes in regional extreme precipitation to anthropogenic climate change is difficult. At very high (95%) confidence, no signals are detected for RX1D, while for the RX5D and multivariate cases only the anthropogenic (ANT) signal is detected, though the fingerprints are in general found to be noisy. The findings indicate that model simulations may underestimate regional climate system responses to increasing human forcings for extremes, and though anthropogenic factors may have a role to play in causing changes in extreme precipitation, their detection is difficult at regional scales and not statistically significant. (C) 2015 Elsevier B.V. All rights reserved.